Atnaujinkite slapukų nuostatas

El. knyga: Laboratory Tests for Unsaturated Soils

(Parahyangan Catholic University, Indonesia), (Nanyang Technological University, Singapore)
  • Formatas: 436 pages
  • Išleidimo metai: 16-Feb-2023
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351600248
  • Formatas: 436 pages
  • Išleidimo metai: 16-Feb-2023
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351600248

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The testing of unsaturated soils requires greater care and effort than that of saturated soils. Although unsaturated soil mechanics has been embraced by geotechnical engineering, engineering practice has not yet caught up as the characterization of unsaturated soils is difficult and time-consuming, and made harder still by a lack of standards.

Laboratory Tests for Unsaturated Soils collates test procedures to cover all laboratory tests for characterising unsaturated soils. It covers the background, theory, test procedures, and interpretation of test results. Each test procedure is broken down into simple stages and described in detail. The pitfalls of each test and the interpretation of the test results are explained. Test data and calculation methods are given, along with many numerical examples to illustrate the methods of interpretation and to offer the presentation of typical results.

The book is especially useful for students and researchers who are new to the field and provides a practical handbook for engineering applications.
Preface xix
Acknowledgments xxi
1 Introduction
1(10)
1.1 Historical development
1(1)
1.2 Unsaturated soils
2(4)
1.2.1 Residual soils
2(2)
1.2.2 Expansive soils
4(1)
1.2.3 Loess
5(1)
1.3 Stresses and stress-state variables
6(5)
References
7(2)
Further reading
9(2)
2 Basic definitions, test environment and general apparatuses
11(12)
2.1 Introduction
11(1)
2.2 Phase relationships
11(3)
2.2.1 Porosity
12(1)
2.2.2 Void ratio
12(1)
2.2.3 Degree of saturation
12(1)
2.2.4 Gravimetric water content
13(1)
2.2.5 Volumetric water content
13(1)
2.2.6 Soil density
13(1)
2.2.7 Volume-mass relationships
14(1)
2.3 Role of air
14(3)
2.4 Test environment
17(1)
2.5 General apparatuses
18(5)
References
21(2)
3 Sampling, storage and sample preparation
23(16)
3.1 Background
23(1)
3.2 Related standards
23(2)
3.3 Sampling category and sample quality
25(4)
3.3.1 BS EN ISO 22475-1 (2006)
25(4)
3.3.2 ASTM D4220/D4220M (2014)
29(1)
3.4 Sampling in unsaturated soil
29(3)
3.5 Labelling soil samples
32(1)
3.6 Storage of unsaturated soil samples
33(2)
3.7 Sample preparations
35(4)
3.7.1 Undisturbed soil specimen
35(1)
3.7.1.1 Specimen prepared from undisturbed samples with retaining ring
35(1)
3.7.1.2 Specimen prepared from undisturbed samples without retaining ring
36(1)
3.7.2 Specimen prepared from re-constituted soil
36(1)
3.7.3 Specimen prepared from compacted soil
36(1)
References
37(1)
Further reading
38(1)
4 Grain-size distribution and specific gravity
39(30)
4.1 Background
39(1)
4.2 Related standards
39(1)
4.3 Soil classification based on grain size
40(1)
4.4 Curve-fitting grain-size distribution
41(2)
4.5 Effect of grain size and packing configuration on the SWCC (contacting spheres model)
43(5)
4.6 Test methods for determining grain-size distribution
48(11)
4.6.1 Sample preparations
49(2)
4.6.2 Preparation of dispersing agent
51(1)
4.6.3 Wet sieving
52(1)
4.6.4 Dry sieving
53(3)
4.6.5 Sedimentation test based on hydrometer
56(3)
4.7 Test methods for determining specific gravity
59(10)
4.7.1 Specific gravity test based on small fluid pycnometer
60(3)
4.7.2 Specific gravity test based on large fluid pycnometer
63(1)
4.7.3 Specific gravity test based on gas jar method
64(1)
4.7.4 Specific gravity test based on gas pycnometer method
65(1)
References
66(1)
Further reading
67(2)
5 Atterberg limits and shrinkage test
69(24)
5.1 Background
69(1)
5.2 Related standards
69(1)
5.3 Theory
70(9)
5.3.1 Fine-grained soil classification
70(1)
5.3.2 Water in soils
70(3)
5.3.3 Shrinkage and swelling curves of soils
73(1)
5.3.4 Classification of soil shrinkage curve
73(3)
5.3.5 Effect of stress history on soil shrinkage curve
76(3)
5.4 Test methods
79(14)
5.4.1 Gravimetric water content test
79(2)
5.4.2 Specimen preparations for liquid limit and plastic limit tests
81(1)
5.4.3 Liquid limit
82(1)
5.4.3.1 Liquid limit based on Casagrande apparatus
83(1)
5.4.3.2 Liquid limit based on fall cone test
83(1)
5.4.4 Plastic limit test
84(1)
5.4.5 Shrinkage limit and shrinkage curve test
85(1)
5.4.5.1 Volumetric shrinkage
85(4)
5.4.5.2 Linear shrinkage
89(1)
References
90(2)
Further reading
92(1)
6 Compaction
93(14)
6.1 Background
93(1)
6.2 Related standards
93(1)
6.3 Theory
94(1)
6.4 Test methods
94(13)
6.4.1 Moist sample preparation
96(2)
6.4.2 Dry sample preparation
98(1)
6.4.3 Compaction test procedures
99(1)
6.4.3.1 Standard and modified compaction test
99(3)
6.4.3.2 Vibrating compaction test
102(1)
6.4.3.3 Static compaction test
103(2)
References
105(1)
Further readings
105(2)
7 Suction measurement
107(10)
7.2 Background
107(1)
7.2 Matric suction
108(1)
7.3 Osmotic suction
109(2)
7.4 Total suction
111(6)
References
113(3)
Further reading
116(1)
8 Matric suction measurement: direct methods
117(18)
8.2 Introduction
117(2)
8.2 Jet-filled or small-tip tensiometer
119(1)
8.3 High-capacity tensiometer
119(5)
8.3.1 Introduction
119(2)
8.3.2 Calibration
121(1)
8.3.3 Evaporation test
122(1)
8.3.4 Types of equilibrium between HCT and soil specimens
122(2)
8.4 Null-type axis translation apparatus
124(5)
8.4.1 Set-up
124(2)
8.4.2 Operation
126(3)
8.5 Hygrometer
129(6)
8.5.1 Calibration
129(1)
8.5.2 Test procedures
130(1)
8.5.3 Precaution
131(1)
References
132(3)
9 Indirect suction measurement methods
135(26)
9.1 Introduction
135(1)
9.2 Related standards
135(1)
9.3 Filter paper method
136(5)
9.3.1 Calibration
137(1)
9.3.2 Test procedures
138(3)
9.3.3 Calculations
141(1)
9.3.4 Summary
141(1)
9.4 Thermal conductivity sensor
141(5)
9.4.1 Calibration
143(2)
9.4.2 Test procedures
145(1)
9.5 Electrical resistance sensors
146(2)
9.5.1 Calibration
147(1)
9.5.2 Test procedures
148(1)
9.6 Capacitance sensor
148(2)
9.6.1 Calibration
150(1)
9.6.2 Test procedures
150(1)
9.7 Electrical conductivity of pore water
150(4)
9.7.1 Saturated extract
151(2)
9.7.2 Mechanical squeezing
153(1)
9.8 Summary
154(7)
References
155(4)
Further reading
159(2)
10 Soil-water characteristic curve
161(34)
10.1 Background
161(1)
10.2 Related standards
162(1)
10.3 SWCC convention
162(1)
10.4 Theory
163(17)
10.4.1 SWCC equations
164(1)
10.4.1.1 Empirical equations
164(2)
10.4.1.2 Physical-based equations
166(4)
10.4.2 Hysteresis
170(1)
10.4.3 The effect of dry density on SWCC
171(7)
10.4.4 Bimodal/multimodal SWCC
178(1)
10.4.5 Using shrinkage curve as an alternative volume measurement
179(1)
10.5 Test methods
180(6)
10.5.1 Specimen preparation
180(1)
10.5.2 Test procedures
180(4)
10.5.3 Suction intervals
184(1)
10.5.4 SWCC test on coarse-grained soils
184(1)
10.5.5 SWCC test on fine-grained soils
185(1)
10.5.6 Accuracy
185(1)
10.6 Estimation of SWCC
186(9)
10.6.1 Pedo-transfer function
186(4)
10.6.2 One-point method
190(1)
References
191(2)
Further reading
193(2)
11 Permeability: steady-state methods
195(12)
11.1 Background
195(1)
11.2 Related standards
196(1)
11.3 Theory
197(2)
11.4 Test method
199(8)
References
205(1)
Further reading
206(1)
12 Permeability: transient-state methods
207(22)
12.1 Background
207(1)
12.2 Related standards
208(1)
12.3 Instantaneous profile method
209(7)
12.3.1 Test set-up
209(4)
12.3.2 Test procedures
213(1)
12.3.2.1 Sample preparation
213(1)
12.3.2.2 Soil column preparation
213(1)
12.3.2.3 Column test
214(2)
12.3.2.4 Finishing
216(1)
12.4 Multistep outflow method
216(4)
12.4.1 Test set-up
216(1)
12.4.2 Test procedures
217(1)
12.4.2.1 Sample preparation
217(1)
12.4.2.2 Preparation of apparatus
217(1)
12.4.2.3 Permeability test
217(1)
12.4.2.4 Rigid-wall permeameter
218(1)
12.4.2.5 Flexible-wall permeameter
219(1)
12.4.2.6 Finishing
220(1)
12.5 Calculations and data interpretation
220(5)
12.5.1 Instantaneous profile method
220(3)
12.5.2 Multistep outflow method
223(2)
12.6 Summary
225(4)
References
225(3)
Further reading
228(1)
13 Oedometer test
229(34)
13.1 Background
229(1)
13.2 Related standards
230(1)
13.3 Theory
230(11)
13.3.1 Settlement and heave
230(3)
13.3.2 Compression, shrinkage and wetting-induced volume change
233(1)
13.3.3 Saturated compression test
233(2)
13.3.4 CWC compression test
235(1)
13.3.5 Wetting-induced swelling/swelling pressure
236(2)
13.3.6 Wetting-induced collapse
238(1)
13.3.7 Constant-suction compression test
238(1)
13.3.8 Configuration of oedometer tests
239(2)
13.4 Test methods
241(22)
13.4.1 Saturated oedometer test
241(1)
13.4.1.1 Specimen preparation stage
241(4)
13.4.1.2 Inundation stage
245(1)
13.4.2 Loading/unloading stage
245(1)
13.4.3 Unsaturated oedometer test
246(1)
13.4.4 CWC and CWC-P tests
247(1)
13.4.4.1 CWC loading
247(1)
13.4.4.2 Wetting under constant net normal stress
248(1)
13.4.4.3 Wetting under constant volume
248(1)
13.4.5 Stages in the CWC oedometer test
249(1)
13.4.5.1 Specimen preparation
249(1)
13.4.5.2 CWC loading/unloading
249(1)
13.4.5.3 Wetting under constant net normal stress
250(1)
13.4.5.4 Wetting under constant volume
250(1)
13.4.5.5 Saturated loading/unloading stage
251(1)
13.4.6 CWC and CWC-P oedometer test procedures
251(1)
13.4.6.1 ASTM D3877-08 for one-dimensional expansion, shrinkage and uplift pressure of soil-lime mixtures
251(3)
13.4.6.2 ASTM D4546-08 for one-dimensional swell or collapse of cohesive soil
254(3)
13.4.6.3 ASTM D5333-03 for measurement of collapse potential of soils
257(1)
13.4.6.4 Wijaya (2017) CWC oedometer test procedure
257(1)
13.4.7 SC Oedometer test
258(1)
13.4.7.1 Constant-suction loading/unloading stage
258(1)
13.4.7.2 Suction decrease (SD) stage
259(1)
References
259(3)
Further reading
262(1)
14 Constant rate of strain test
263(18)
14.1 Background
263(1)
14.2 Related standard
263(1)
14.3 Theory
264(8)
14.3.1 Saturated CRS test (ASTM D4186/D4186M-12 2012)
264(4)
14.3.2 Unsaturated CRS test
268(4)
24.4 Test methods
272(9)
14.4.1 CRS apparatus calibration stages
272(1)
14.4.1.1 Calibration for apparatus compressibility
272(1)
14.4.1.2 Calibration for chamber pressure
272(1)
14.4.1.3 Calibration for piston uplift
273(1)
14.4.1.4 Calibration for piston seal dynamic friction
273(1)
14.4.2 Specimen preparation
273(1)
14.4.3 Saturated CRS test
274(1)
14.4.3.1 End calibration and set-up stage
275(1)
14.4.3.2 Saturation stage
276(1)
14.4.3.3 Loading stage
276(1)
14.4.3.4 Unloading stage
277(1)
14.4.3.5 Constant load stage
277(1)
14.4.3.6 End-stage
277(1)
14.4.4 CWC-CRS test
277(1)
14.4.4.1 Suction initialisation stage
277(1)
14.4.4.2 Calibration and set-up stage
278(1)
14.4.4.3 Loading stage
278(1)
14.4.4.4 Unloading stage
278(1)
14.4.4.5 Inundation stage
278(1)
14.4.4.6 End-stage
279(1)
References
279(1)
Further reading
280(1)
15 Triaxial test (volume change)
281(20)
25.2 Background
281(1)
15.2 Related standards
281(1)
15.3 Theory
282(7)
15.3.1 Stress and strain of soils
282(6)
15.3.2 Compression curve based on stress and strain invariants
288(1)
15.4 Triaxial test for saturated and unsaturated soil
289(5)
15.4.1 Volume measurement for unsaturated triaxial test
290(1)
15.4.1.1 Volume measurement based on confining cell fluid displacement
291(2)
15.4.1.2 Volume measurement based on specimen fluid displacement
293(1)
15.4.1.3 Volume measurement based on the direct measurement of specimen dimension
294(1)
15.5 Triaxial test calibrations
294(7)
15.5.1 Load cell uplift correction
295(1)
15.5.2 Filter-paper correction
295(1)
15.5.3 Membrane correction
296(1)
15.5.4 Triaxial test calculation
297(1)
References
298(2)
Further reading
300(1)
16 Direct shear test
301(16)
16.1 Background
301(1)
16.2 Related standards
301(1)
16.3 Theory
302(1)
16.4 Test methods
303(5)
16.4.1 CWC test
305(1)
16.4.2 CS test
306(2)
16.5 Test procedures
308(5)
16.5.1 CWC test
309(2)
16.5.2 CStest
311(2)
16.6 Interpretation of test results
313(4)
References
316(1)
17 Triaxial test (shear strength)
317(24)
17.1 Background
317(1)
17.2 Related standards
317(1)
17.3 Theory
318(6)
17.3.1 Mohr-Coulomb (MC) model for saturated and unsaturated soil
319(1)
17.3.2 Failure envelope of unsaturated soil based on MC model
320(4)
17.4 CS triaxial test
324(1)
17.5 CWC triaxial test
324(1)
17.6 Test methods
325(16)
17.6.1 UC test
328(1)
17.6.2 UU test
329(1)
17.6.3 CU test
330(1)
17.6.4 CD test
331(1)
17.6.5 IC test
332(1)
17.6.6 At rest (k0) consolidation test (k0C)
333(1)
17.6.7 CCSS test
334(1)
17.6.8 ICSC test
335(1)
17.6.9 CCWCS test
336(1)
17.6.10 Isotropic constant water content consolidation test(ICWCC)
337(1)
References
338(2)
Further reading
340(1)
18 Ring shear test
341(12)
18.1 Background
341(1)
18.2 Related standards
342(1)
18.3 Test methods and apparatus
342(4)
18.4 Test procedures
346(3)
18.5 Calculations
349(1)
18.6 Summary
350(3)
References
351(2)
19 Tension test
353(16)
19.1 Background
353(1)
19.2 Related standards
354(1)
19.3 Direct tensile test
355(3)
19.3.1 Test apparatus
357(1)
19.3.2 Preparation of soil specimen
357(1)
19.3.3 Test procedures
357(1)
19.3.4 Calculations
358(1)
19.4 Indirect tensile tests
358(6)
19.4.1 Unconfined penetration test
359(1)
19.4.1.1 Test apparatus and soil specimen
360(1)
19.4.1.2 Test procedures
361(1)
19.4.1.3 Calculations
361(1)
19.4.2 Brazilian tensile strength test
362(1)
19.4.2.1 Test apparatus and preparation of soil specimen
363(1)
19.4.2.2 Test procedures
363(1)
19.4.2.3 Calculations
364(1)
19.5 Summary
364(5)
References
365(4)
20 Wave velocities
369(20)
20.1 Background
369(1)
20.2 Related standards
370(1)
20.3 Bender element test
370(10)
20.3.1 Test set-up
372(3)
20.3.2 Test procedures
375(2)
20.3.3 Interpretations
377(3)
20.4 Ultrasonic test
380(9)
20.4.1 Test set-up
381(2)
20.4.2 Test procedures
383(3)
20.4.3 Calculations
386(1)
References
386(2)
Further reading
388(1)
21 Thermal conductivity
389(10)
21.1 Background
389(1)
21.2 Relevant standards
390(1)
21.3 Theory
391(1)
21.4 Test method
391(1)
21.5 Test procedures
392(7)
21.5.1 Calibration
392(1)
21.5.2 Soil specimen
393(1)
21.5.3 Test procedures
394(1)
21.5.4 Calculations
394(2)
References
396(2)
Further reading
398(1)
Appendix A Glossary of terms 399(4)
Appendix B Formulas and conversion factors 403(2)
Index 405
Eng-Choon Leong is an associate professor at Nanyang Technological University, Singapore. He has more than 350 publications in international journals and conferences. He is a recipient of the 2004 ASTM Best Practical Paper for Geotechnical Practice Award, and a recipient of the Koh Boon Hwee mentor award. He is lead author of Engineering Students Guide for Research Projects and co-editor (with Geoffrey Blight) of the second edition of Mechanics of Residual Soils, both published by CRC Press.

Martin Wijaya is a lecturer at Parahyangan Catholic University. He completed a PhD at Nanyang Technological University, Singapore, and has worked for a soil investigation company as a geotechnical engineer, having gained considerable experience in site investigation testing and analyses.