Atnaujinkite slapukų nuostatas

El. knyga: Language Of Game Theory, The: Putting Epistemics Into The Mathematics Of Games

(New York Univ, Usa)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This volume contains eight papers written by Adam Brandenburger and his co-authors over a period of 25 years. These papers are part of a program to reconstruct game theory in order to make what players believe about a game a central feature of the theory. The program — now called epistemic game theory — extends the classical definition of a game model to include not only the game matrix or game tree, but also what each player believes about how the game will be played, and even higher-order beliefs. With this richer mathematical framework, it becomes possible to determine what different configurations of beliefs among the players imply for how a game is played. Epistemic game theory includes traditional equilibrium-based theory as a special case, but allows for a wide range of non-equilibrium behavior.
Foreword ix
About the Author xv
Acknowledgments xvii
Introduction xix
Chapter 1 An Impossibility Theorem on Beliefs in Games
1(30)
Adam Brandenburger
H. Jerome Keisler
1 Introduction
2(3)
2 The Existence Problem for Complete Belief Models
5(1)
3 Belief Models
6(2)
4 Complete Belief Models
8(2)
5 Impossibility Results
10(3)
6 Assumption in Modal Logic
13(2)
7 Impossibility Results in Modal Form
15(4)
8 Strategic Belief Models
19(2)
9 Weakly Complete and Semi-Complete Models
21(3)
10 Positively and Topologically Complete Models
24(3)
11 Other Models in Game Theory
27(4)
References
29(2)
Chapter 2 Hierarchies of Beliefs and Common Knowledge
31(12)
Adam Brandenburger
Eddie Dekel
1 Introduction
31(2)
2 Construction of Types
33(3)
3 Relationship to the Standard Model of Differential Information
36(7)
References
40(3)
Chapter 3 Rationalizability and Correlated Equilibria
43(16)
Adam Brandenburger
Eddie Dekel
1 Introduction
43(3)
2 Correlated Rationalizability and A Posteriori Equilibria
46(5)
3 Independent Rationalizability and Conditionally Independent A Posteriori Equilibria
51(3)
4 Objective Solution Concepts
54(5)
References
56(3)
Chapter 4 Intrinsic Correlation in Games
59(54)
Adam Brandenburger
Amanda Friedenberg
1 Introduction
60(2)
2 Intrinsic vs. Extrinsic Correlation
62(1)
3 Comparison
63(3)
4 Organization of the
Chapter
66(1)
5 Type Structures
66(3)
6 The Main Result
69(4)
7 Comparison Contd
73(3)
8 Formal Presentation
76(1)
9 CI and SUFF Formalized
77(2)
10 RCBR Formalized
79(1)
11 Main Result Formalized
80(7)
12 Conclusion
87(26)
Appendices
88(22)
References
110(3)
Chapter 5 Epistemic Conditions for Nash Equilibrium
113(24)
Robert Aumann
Adam Brandenburger
1 Introduction
113(4)
2 Interactive Belief Systems
117(3)
3 An Illustration
120(1)
4 Formal Statements and Proofs of the Results
121(3)
5 Tightness of the Results
124(4)
6 General (Infinite) Belief Systems
128(1)
7 Discussion
129(8)
References
135(2)
Chapter 6 Lexicographic Probabilities and Choice Under Uncertainty
137(24)
Lawrence Blume
Adam Brandenburger
Eddie Dekel
1 Introduction
138(2)
2 Subjective Expected Utility on Finite State Spaces
140(2)
3 Lexicographic Probability Systems and Non-Archimedean SEU Theory
142(3)
4 Admissibility and Conditional Probabilities
145(2)
5 Lexicographic Conditional Probability Systems
147(3)
6 A "Numerical" Representation for Non-Archimedean SEU
150(2)
7 Stochastic Independence and Product Measures
152(9)
Appendix
154(5)
References
159(2)
Chapter 7 Admissibility in Games
161(52)
Adam Brandenburger
Amanda Friedenberg
H. Jerome Keisler
1 Introduction
162(1)
2 Heuristic Treatment
163(13)
3 SAS's and the IA Set
176(1)
4 Lexicographic Probability Systems
177(1)
5 Assumption
178(2)
6 Properties of Assumption
180(1)
7 Type Structures
181(4)
8 Characterization of RCAR
185(2)
9 Characterization of RmAR in a Complete Structure
187(3)
10 A Negative Result
190(1)
11 Discussion
190(23)
Appendices
192(18)
References
210(3)
Chapter 8 Self-Admissible Sets
213(38)
Adam Brandenburger
Amanda Friedenberg
1 Introduction
213(3)
2 Preview
216(1)
3 Self-Admissible Sets
217(3)
4 Applications
220(4)
5 Strategic-Form Properties of SAS's
224(1)
6 Extensive-Form Properties of SAS's
225(4)
7 Perfect-Information Games
229(6)
8 Discussion
235(16)
Appendix
240(7)
References
247(4)
Subject Index 251(10)
Author Index 261