Atnaujinkite slapukų nuostatas

El. knyga: Laser and Fiber Optic Gas Absorption Spectroscopy

(University of Strathclyde)
  • Formatas: PDF+DRM
  • Išleidimo metai: 08-Apr-2021
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316805626
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 08-Apr-2021
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781316805626
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An invaluable text for the teaching, design, and development of gas sensor technology. This excellent resource synthesizes the fundamental principles of spectroscopy, laser physics, and photonics technology and engineering to enable the reader to fully understand the key issues and apply them in the design of optical gas absorption sensors. It provides a straightforward introduction to low-cost and highly versatile near-IR systems, as well as an extensive review of mid-IR systems. Fibre laser systems for spectroscopy are also examined in detail, especially the emerging technique of frequency comb spectroscopy. Featuring many examples of real-world application and performance, as well as MATLAB computer programs for modeling and simulation, this exceptional work is ideal for postgraduate students, researchers, and professional engineers seeking to gain an in-depth understanding of the principles and applications of fibre-optic and laser-based gas sensors.

A rigorous account of the physics and engineering principles of diode and fibre laser gas sensor design, based on tuneable diode laser and fibre optic spectroscopy with key applications. Includes computer programs for modeling and simulation.

Recenzijos

'For years, I have been looking forward to a book like this. It puts together all the important elements needed for laser and fiber optic spectroscopy, in particular for gas sensing applications. With lots of scientific insights, rigorous theoretical analysis and design details, students, researchers and practicing engineers would definitely benefit from reading it.' Wei Jin, The Hong Kong Polytechnic University 'Laser and Fiber Optic Gas Absorption Spectroscopy is an enormously valuable survey of modern spectroscopic techniques, covering fundamentals of spectroscopy with the same care is the most recent spectrometer designs. Written by one of the most accomplished authorities in the field, this book will serve well as a textbook for the newcomer to the field and as a reference for established scientists and engineers. References to countless original articles and reviews, together with many original contributions by the author, help the reader obtain an excellent overview of the field. Highly recommended!' Hans-Peter Loock, University of Victoria 'Molecular infrared absorption spectroscopy has become a pervasive tool in many branches of science and engineering, drawing upon a broad range of opto-electronic methods and skills. This book is a unique attempt to present an overview of the technology, from fundamentals to the state-of-the-art, and it offers an efficient entrée to the field for new users and experienced researchers alike.' Hugh McCann, The University of Edinburgh 'This book is a unique attempt to overview the technology of laser and fiber optic absorption spectroscopy for gas sensing applications, from fundamentals to state-of-the-art. It offers an efficient entry to the field for new users and experienced researchers.' Lisa Tongning Li, Journals in Physics & Astronomy 'The special appeal of the book for academics is the inclusion of MATLAB program code this book is a good investment Highly recommended.' M. S. Field, Choice Magazine

Daugiau informacijos

A rigorous account of the physics and engineering of diode and fibre laser gas sensor design, with key applications.
Preface xiii
1 Absorption Spectroscopy Of Gases
1(20)
1.1 Introduction
1(1)
1.2 Fundamentals of Optical Absorption
1(5)
1.2.1 Definition of Parameters
1(2)
1.2.2 Absorption Lineshape Functions
3(3)
1.3 Extraction of Gas Parameters from Absorption Line Measurements
6(1)
1.4 Absorption Spectra of Gases
7(11)
1.4.1 Rotational Lines of Gases
7(2)
1.4.2 Vibrational Lines of Gases
9(3)
1.4.3 Rovibrational Lines
12(1)
1.4.4 Examples of Gas Absorption Spectra
13(5)
1.5 Relative Merits of Near-IR and Mid-IR Absorption Spectroscopy
18(1)
1.6 Conclusion
19(1)
References
19(2)
2 Dfb Lasers For Near-Ir Spectroscopy
21(32)
2.1 Introduction
21(1)
2.2 Structure of DFB Lasers
21(2)
2.3 Application of DFB Lasers in Tunable Diode Laser Spectroscopy
23(2)
2.4 Thermal Tuning and Modulation
25(6)
2.4.1 RC Thermal Model of Laser Diode
25(2)
2.4.2 DC Thermal Tuning
27(1)
2.4.3 Thermal Modulation of the Optical Frequency
27(3)
2.4.4 1-D Thermal Model from Heat Conduction Equation
30(1)
2.5 Intensity and Frequency Modulation from Carrier Effects
31(6)
2.5.1 Steady-State DC Analysis
33(2)
2.5.2 Perturbation Analysis for Effects of Current Modulation
35(2)
2.6 Combined Carrier and Thermal Effects
37(1)
2.7 Measurement of DFB Laser Characteristics
38(4)
2.8 Conclusion
42(2)
Appendix 2.1 Analytical 1-D Thermal Model of a Diode Laser
44(3)
Appendix 2.2 Perturbation Analysis of the Laser Rate Equations
47(3)
References
50(3)
3 Wavelength Modulation Spectroscopy With Dfb Lasers
53(32)
3.1 Introduction
53(1)
3.2 Techniques for Gas Absorption Spectroscopy
53(3)
3.3 Theoretical Description of Wavelength Modulation Spectroscopy
56(9)
3.3.1 Harmonic Signals Arising from WMS
56(5)
3.3.2 The First Harmonic Signal
61(2)
3.3.3 The Second Harmonic Signal
63(1)
3.3.4 Effect of a Non-Linear LI Curve
63(2)
3.4 Use of the Intensity Modulation of the Laser Output for Gas Measurements
65(7)
3.4.1 Lock-In Measurements from Both Axes
67(1)
3.4.2 Approximations for Higher Modulation Indices
68(2)
3.4.3 Elimination of the Background Intensity Modulation
70(2)
3.5 Use of WMS Harmonics for Gas Measurements
72(5)
3.5.1 The 2f/1f Technique
73(3)
3.5.2 The 1f/1fx Technique
76(1)
3.6 Comparison of Methods
77(2)
3.7 Conclusion
79(1)
Appendix 3.1 Approximations for Fourier Coefficients from a Taylor Series Expansion
80(2)
Appendix 3.2 Fourier Coefficients for Non-Linear Absorption
82(1)
References
83(2)
4 Photoacoustic Spectroscopy With Dfb Sources
85(26)
4.1 Introduction
85(1)
4.2 Fundamentals of Photoacoustic Spectroscopy
85(8)
4.2.1 Theoretical Description
85(2)
4.2.2 Non-Resonant Solution
87(1)
4.2.3 Acoustic Resonant Modes of Cells
88(2)
4.2.4 Excitation of Resonant Modes by Intensity Modulation
90(2)
4.2.5 Photoacoustic Signal with a DFB Laser Source
92(1)
4.3 Design of Photoacoustic Cells
93(8)
4.3.1 Open-Ended Resonators
93(5)
4.3.2 Miniaturised Open-Ended Resonators
98(1)
4.3.3 Azimuthal and Radial Modes in Closed Cells
98(3)
4.4 Detection, Calibration and Noise in PAS Systems
101(3)
4.5 Quartz-Enhanced Photoacoustic Spectroscopy
104(1)
4.6 Conclusion
105(1)
Appendix 4.1 Derivation of the Amplitudes of the Acoustic Eigenmodes
106(2)
Appendix 4.2 Derivation of the Heat Generation Function with a Modulated DFB Laser
108(1)
References
109(2)
5 Design And Application Of Dfb Laser Systems And Optical Fibre Networks For Near-Ir Gas Spectroscopy
111(48)
5.1 Introduction
111(1)
5.2 Gas Cells for DFB Lasers and Optical Fibre Systems
111(5)
5.2.1 Bulk and Multi-Pass Cells
112(1)
5.2.2 Micro-Optic Cells
113(1)
5.2.3 Etalon Fringe Reduction
114(2)
5.3 High-Finesse Cells for Sensitivity Enhancement
116(10)
5.3.1 Ring-Down Spectroscopy
117(2)
5.3.2 Cavity-Enhanced Spectroscopy
119(2)
5.3.3 Off-Axis Cavity-Enhanced Spectroscopy
121(3)
5.3.4 Optical Feedback Cavity-Enhanced Spectroscopy
124(1)
5.3.5 Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectroscopy
125(1)
5.4 Optical Fibre and Waveguide Gas Cells
126(6)
5.4.1 Evanescent-Wave Cells
126(5)
5.4.2 Micro-Structured Optical Fibre Gas Cells
131(1)
5.5 Fibre Optic Gas Sensor Networks
132(6)
5.5.1 Multi-Point Gas Sensor Network with Spatial-Division Multiplexing
132(3)
5.5.2 Multi-Point Gas Sensor Network with Time-Division Multiplexing
135(1)
5.5.3 Multi-Point Gas Sensor Network with FMCW Multiplexing
136(2)
5.6 Open-Path and Free-Space Systems
138(5)
5.6.1 Detection and Imaging of Gas Leaks
138(1)
5.6.2 Combustion Analysis and Emissions Monitoring
139(1)
5.6.3 Tomographic Imaging of Emissions and Combustion Processes
140(1)
5.6.4 Atmospheric Sensing and Monitoring
141(2)
5.7 Further Information on Near-IR Gas Sensing and Applications
143(1)
5.8 Conclusion
143(2)
Appendix 5.1 Evanescent-Wave Interaction
145(3)
Appendix 5.2 Photodiode Receiver Circuit and Signal-to-Noise Ratios
148(5)
References
153(6)
6 Principles Of Fibre Amplifiers And Lasers For Near-Ir Spectroscopy
159(39)
6.1 Introduction
159(1)
6.2 Rare Earth Elements for Fibre Amplifiers and Lasers
159(2)
6.3 Spectral Characteristics of Erbium-Doped Fibre
161(5)
6.3.1 Energy Levels of Erbium Ions in Erbium-Doped Fibre
161(2)
6.3.2 Absorption and Emission Properties of Rare-Earth-Doped Fibre
163(3)
6.4 Principles of Operation of Fibre Amplifiers and Lasers
166(6)
6.4.1 Atomic Rate Equation for Fibre Amplifiers
167(2)
6.4.2 Cavity and Atomic Rate Equations for Fibre Lasers
169(3)
6.5 Regimes of Operation of Fibre Lasers
172(11)
6.5.1 CW Operation
172(5)
6.5.2 Transient Operation
177(4)
6.5.3 Multi-Wavelength Operation
181(1)
6.5.4 Mode-Locked Operation
182(1)
6.6 Raman Fibre Amplifiers and Lasers
183(2)
6.7 Conclusion
185(1)
Appendix 6.1 Einstein Relations and the Absorption and Emission Cross-Sections
186(4)
Appendix 6.2 McCumber Relationship for the Absorption and Emission Cross-Sections
190(3)
Appendix 6.3 Atomic Rate Equation for Rare-Earth-Doped Fibre
193(2)
References
195(3)
7 Applications Of Fibre Amplifiers And Lasers In Spectroscopy
198(34)
7.1 Introduction
198(1)
7.2 Basic Applications as Amplifiers or Sources in Near-IR Spectroscopy
198(5)
7.2.1 Applications of Fibre Amplifiers in Near-IR Absorption Spectroscopy
198(2)
7.2.2 Fibre Laser Sources for Near-IR Absorption Spectroscopy
200(3)
7.3 Frequency Comb Spectroscopy with Mode-Locked Fibre Lasers
203(12)
7.3.1 Generation of Frequency Combs
205(3)
7.3.2 Interrogation of Absorption Lines by Frequency Combs
208(1)
7.3.3 Dual-Comb Frequency Spectroscopy
208(4)
7.3.4 Cavity-Enhanced Dual-Comb Spectroscopy
212(1)
7.3.5 Applications of Fibre Laser Combs for Spectroscopy
213(2)
7.4 Ring-Down Spectroscopy with Passive and Active Fibre Cavities
215(4)
7.5 CW Fibre Lasers with an Intra-Cavity Gas Cell
219(5)
7.6 Intra-Cavity Laser Absorption Spectroscopy with Fibre Lasers
224(4)
7.7 Conclusion
228(1)
References
228(4)
8 Mid-Ir Systems And The Future Of Gas Absorption Spectroscopy
232(23)
8.1 Introduction
232(1)
8.2 Mid-IR Sources
233(11)
8.2.1 Mid-IR Diode Laser Sources
233(3)
8.2.2 Mid-IR Fibre Laser Sources
236(2)
8.2.3 Mid-IR Sources Based on Near-IR Down-Conversion
238(3)
8.2.4 Mid-IR Laser Combs
241(3)
8.3 Mid-IR Spectroscopy Techniques
244(3)
8.3.1 Wavelength Modulation Spectroscopy (WMS) in the Mid-IR
245(1)
8.3.2 Cavity-Enhanced Absorption Spectroscopy (CEAS) in the Mid-IR
245(1)
8.3.3 Evanescent-Wave Spectroscopy in the Mid-IR
246(1)
8.3.4 Photoacoustic Spectroscopy in the Mid-IR
246(1)
8.4 Mid-IR Materials and Fibres
247(2)
8.5 Mid-IR Detectors
249(1)
8.6 Near-IR and Mid-IR Gas Spectroscopy: Future Prospects
250(1)
References
250(5)
Index 255
George Stewart is Research Professor at the University of Strathclyde.