Atnaujinkite slapukų nuostatas

El. knyga: Laser-Surface Interactions for New Materials Production: Tailoring Structure and Properties

Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Springer Series in Materials Science 130
  • Išleidimo metai: 05-Dec-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642033070
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Springer Series in Materials Science 130
  • Išleidimo metai: 05-Dec-2009
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642033070
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book originates from lectures delivered at the First International School "Laser-surface interactions for new materials production: tailoring structure and properties" that was held in San Servolo Island, Venice (Italy) from 13 to 20 July, 2008 under the direction of A. Miotello and P. M. Ossi. The purpose of the School was to provide the students (mainly PhD) with a compreh- sive overview of basic aspects and applications connected to the laser-matter interaction both to modify surface properties and to prepare new materials by pulsed laser deposition (PLD) at the nanometer scale. The ?eld is re- tively young and grewrapidly in the last 10 years because of the possibility of depositingvirtuallyanymaterial,includingmulti-component lms,preserving the composition of the ablated target and generally avoiding post-deposition thermaltreatments. Inaddition,theexperimentalsetupforPLDiscompatible with in situ diagnostics of both the plasma and the growing ?lm. The basic laser-surface interaction mechanisms, possibly in an ambient atmosphere, either chemically reactive or inert, are a challenge to sci- tists, while engineers are mostly interested in the characteristics of the deposited materials and the possibility of tailoring their properties through an appropriate tuning of the deposition parameters.
Laser Interactions in Nanomaterials Synthesls
1(18)
David B. Geohegan
Alex A. Puretxky
Chris Rouleau
Jeremy Jackson
Gyula Eres
Zuqin Liu
David Styers-Barnett
Hui Hu
Bin Zhao
Ihia Ivanov
Karren More
Introduction
1(1)
Laser Albation and Plume Thermalization at Low Pressures
2(2)
Synthesis of Nanoparticles by Laser Vaporization
4(1)
Self-Assembly of Carbon Fullerenes and Nanohorns
5(4)
Catlyst-Assisted Synthesis of SWNT's
9(1)
Laser Diagnostics and Controlled Chemical Vapor Deposition of Carbon Nanotubes
10(1)
Summary
10(5)
References
15(4)
Basic Physics of Femtosecond Laser Ablation
19(24)
Juergen Reif
Introduction
19(1)
Energy Input
20(3)
Multiphoton Excitation
22(1)
Ion Emission: Albation
23(3)
Experimental Observation
23(2)
Desorption Mechanism - Coulomb Explosion
25(1)
Transient, Local Target Modification
26(4)
Incubation
26(1)
Transient Dynamics
27(3)
Transient Instability and Self-Organized Structure Formation
30(8)
Periodic ``Ripples'' Structures
30(2)
Instability and Self-Organization
32(3)
Polarization Dependence
35(3)
Discussion
38(1)
References
39(4)
Atomic/Molecular-Level Simulations of Laser-Materials Interactions
43(38)
Leonid V. Zigilei
Zibin Lin
Dmitriy S. Ivanov
Elodie Leveugle
William H. Duff
Derek Thomas
Corlos Sevilla
Stephen J. Guy
Introduction
43(4)
Molecular Dynamics Method for Simulation of Laser-Materials Interactions
47(8)
Molecular Dynamics Method
47(1)
Coarse-Grained MD model for Simulation of Laser Interactions with Molecular Systems
48(3)
Combined Contimuum-Atomistic Model for Simulation of Laser Interacvtions with Metals
51(2)
Boundary Conditions: Presssure Waves and Heat Conduction
53(2)
Simulations of Laser-Induced Structural and Phase Transformations
55(15)
Generaions of Crystal Defects
56(3)
Mechanisms and Kinetics of Laser Melting
59(4)
Photomechanical Spallation
63(4)
Phase Explosion and Laser Ablation
67(3)
Concluding Remarks
70(2)
Refereences
72(9)
Continuum Models of Ultershort Pulsed Laser Ablation
81(18)
Nadezhda M. Bulgakova
Razvan Stoian
Arkadi Rosenfield
Innolf V. Hertel
Introduction
81(1)
Ultrashort Laser-matter Interaction
82(2)
Notes on Contimuum Modeling in Application to Utrashort, Laser-Matter Interactions
84(5)
A General Continuum Approach for Modeling of Laser-induced Surface Charging
89(5)
Concluding Remarks
94(1)
References
95(4)
Cluster Synthesis and Cluster-Assembled Deposition in Nanosecond Pulsed Laser Ablation
99(26)
Paolo M. Ossi
Introduction
99(3)
Phenomenology of Plume Expansion through an Ambient Gas
102(3)
Analytical Models for Plume Propagation through an Ambient Gas
105(3)
Mixed-Propagation Model
108(6)
Nanoparticle Growth
114(8)
Concluding Remarks
122(1)
References
122(3)
Nanoparticle Formation by Femtosecond Laser Ablation
125(16)
Chantal Boulmer-Leborgne
Ratiba Benxerga
Jacques Perriere
Introduction
125(1)
Experimental
126(1)
Results
127(11)
Nature of the Species Emitted During fs PLD
129(2)
Nature of the Nanoparticle Formed During of PLD
131(3)
Relevant Paramet6ers of Nanoparticle Formation
134(4)
Conclusions
138(1)
References
139(2)
UV Laser Ablation of Polymers: From Structuring of Thin Film Deposition
141(36)
Thomas Lippert
Introduction
141(4)
Laser Ablation of Polymers
141(1)
Polymers: A Short Primer
142(3)
Polymer Properties and Ablation
145(19)
Polymer Names
149(1)
Polymers and Photochemistry
149(1)
Fundamental Issues of Laser Ablstion
150(3)
Ablation Mechanism
153(4)
Doped Polymers
157(1)
Designed Polymers: Triasene Polymers
158(5)
Comparison of Designed and Commercially Available Polymers
163(1)
Deposition of Thin Films Using VV Lasers
164(6)
Conclusion
170(1)
References
171(6)
Deposition of Polymer and Organic Thin Films using Tunable, Ultrashort-Pulse Mid-Infrared Lasers
177(26)
Stephen L. Johnson
Michael R. Papantonakis
Richard F. Haglund
Introduction and Motivation
177(7)
Mechanism of Laser Ablation at High Vibrational Excitation Density
178(1)
The Role of Excitation Density in Materiais Modification
179(3)
Laser Ablation at High Intensity and Pluse-Repetition Frequency
182(1)
Figures of Merit for Comparing Different Laser Processing Regimes
183(1)
Resonant Infrared Pulsed Laser Ablation of Neat Targets
184(7)
Experimental Details
184(1)
Resonant Infrared Laser Ablation of Poly(Ethylene Glycol)
185(2)
Resonant Infrared Laser Ablation of Polystyrene
187(3)
Resonant Infrared Laser Deposition of Poly(Tetrafluoroethylene)
190(1)
Matrix-Assisted Resonant Infrared Plused Laser Deposition
191(7)
Deposition of the Conducting Polymer PEDOT:PSS
192(2)
Deposition of the Light-Emitting Polymer MEH-PPV
194(2)
Deposition of Functionalised Nanoperticles
196(2)
Solid-State Lasers for Resonant MIR Ablation
198(2)
Conclusion
200(1)
References
201(2)
Fundamentals and Applications of MAPLE
203(32)
Armando Luches
Anna Paola Caricato
Introduction
203(2)
MAPLE Deposition Apparatus
205(1)
MAPLE Deposition of Polymers and Organic Materials
206(9)
MAPLE Deposition of Biomaterials
215(3)
MAPLE Deposition of Nanoparticle Films
218(12)
MAPLE Deposition of Tio2 Nanoparticle Films
219(4)
MAPLE Deposition of Sno2 Nanoparticle Films
223(7)
Discussion
230(1)
Conclusions
231(1)
References
231(4)
Advanced Biomimetic Implants Based on Nonostructured Coatings Synthesized by Plused Laser Technologies
235(26)
Ion N. Mihailescu
Carmen Ristoscu
Adrana Bigi
Isaac Mayer
Introduction
235(5)
Pulsed Laser Deposition Technologies
236(3)
Calcium Phosphates
239(1)
HA Coatings
240(3)
Octacalcium Phosphate
243(2)
Carbonated HA and β-TCP Doped with Mn2+ Coatings
245(4)
Carbonated HA Deped with Mn2+
245(2)
β-Tricalcium Phosphate Doped with Mn2+
247(2)
Sr-Doped HA
249(3)
Hybrid Orgnic-Inorganic Bionanocomposites
252(5)
Biopolymers-CaP
252(2)
Alendronate-HA
254(3)
Conclusions
257(1)
References
257(4)
Laser Direct Writing of Idealized Callular and Biologic Constructs for Tissue Engineering and Regenerative Medicine
261(18)
Nathan R. Schiele
David T. Corr
Douglas B. Chrisey
Conventional Tissue Engineering
261(1)
History of Cell Patterning and Direct Writing Biomaterials
262(2)
Matrix-Assisted Pulsed Laser Evaporation Direct Write
264(3)
Preparation of a Ribbon for Direct Write of Cells
267(1)
Combinatinatorial Libraries of Idealized Constructs
268(1)
Current MAPLE DW for Tissue Engineering, Regenerative Medicine, and Cancer Research
269(1)
Musculoskeletal Tissue Engineering
269(2)
Breast Cancer Metastasis
271(1)
The Neural Stem Call Niche
272(1)
Extracellular Matrix
273(1)
Reproducibility and Repeatability
274(2)
Conclusions
276(1)
Future Directions
277(1)
References
277(2)
Ultrafast Laser Processing of Glass Down to the Nano-Scale
279(16)
Koji Sugioka
Introduction
279(1)
Features of Ultrafast Laser Processing
280(2)
Minimal Thermal Influence
280(1)
Multiphoton Absorption
281(1)
Internal Modification
282(1)
Spatial Resolution of Ultrafast Laser Processing
282(2)
Surface Micromachining
284(1)
Internal Modification of Refractive Index
284(3)
Fabrication of 3D Hollow Structures
287(2)
Intergration of Optical Waveguide and Microfluidics for Optofluidics Applications
289(1)
Nanofabrication
290(2)
Conclusions
292(1)
References
292(3)
Free Electron Laser Synthesis of Functional Coatings
295(12)
Peter Schaaf
Daniel Hoche
Introduction
296(3)
The Free Electron Laser
296(1)
Direct Laser Synthesis
297(1)
Protective Coatings and TIN
298(1)
Experiments
299(1)
Sample Preparation and Setup
299(1)
Analysis Methods
300(1)
Results
300(4)
FEL Irradiation at CW-Mode
300(2)
FEL Irradiation at Plused Mode
302(2)
Conclusions
304(1)
References
305(2)
PLD of Plesoelectric and Ferroelectric Materials
307(24)
Maria Dinescu
Introduction
307(2)
RF-Assisted Pulsed Laser Deposition
309(2)
Non-Ferroelectric Plesoelectrics
311(16)
Zno
311(16)
Conclusions
327(1)
References
327(4)
Lasers in Cultural Heritages: The Non-Contact Intervention
331(20)
Wolfgang Kautek
Introduction
331(1)
Architectonic Structures and Sculptures
332(3)
Metallic Arterfacts
335(1)
Biogenetic Substrates
336(1)
Technology
336(3)
Case Studies and Diagnostics
339(8)
Conclusions
347(1)
References
347(4)
Index 351