Atnaujinkite slapukų nuostatas

El. knyga: Lasers with Nuclear Pumping

  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Nov-2014
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319088822
  • Formatas: PDF+DRM
  • Išleidimo metai: 27-Nov-2014
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319088822

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book covers the history of lasers with nuclear pumping (Nuclear Pumped Lasers, NPLs). This book showcases the most important results and stages of NPL development in The Russian Federal Nuclear Center (VNIIEF) as well as other Russian and international laboratories, including laboratories in the United States. The basic science and technology behind NPLs along with potential applications are covered throughout the book.As the first comprehensive discussion of NPLs, students, researchers, and application engineers interested in high energy lasers will find this book to be an extremely valuable source of information about these unique lasers.

General Issues.- Organization of Experiments On Pulsed Reactors to Seek and Study Nuclear-pumped Lasers.- Investigations of Reactor-pumped Gas NPLs.- Basic Parameters of Nuclear-excited Plasma.- Lasing Mechanisms and Kinetic Models of NPLs.- Nuclear-pumped Laser Devices Based on Gas Media.- Energy Deposition in Gas NPL Active Media.- Optical Inhomogeneities in Sealed NPLs.- Specific Features of NPLs with a Flowing Gas Medium.- Design Concepts for Stationary Reactor Lasers.- Studies of Condensed-media NPLs.- Gas Lasers Excited by Ratiation from Nuclear Explosions.- Comments About Nuclera-Pumped Laser Reserach in the United States.
1 General Issues
1(22)
1.1 Chronology of Main Events. Initial Phases of Research
1(8)
1.2 Methods of Excitation. Pumping Sources
9(5)
Nuclear Explosive Devices
10(1)
Radioactive Isotopes
10(1)
Laboratory Neutron Sources
11(3)
1.3 Problems in the Search for Laser Media
14(9)
References
15(8)
2 Organization of Experiments on Pulsed Reactors to Seek and Study Nuclear-Pumped Lasers
23(30)
2.1 Specifics of Experiments on Pulsed Reactors
23(5)
2.2 Problems of NPL Radiation Resistance
28(4)
Optical Materials
28(3)
Optical Fibers
31(1)
Laser Receivers
31(1)
2.3 Methods of First Experiments on VIR-2 and TIBR-1M (VNIIEF) Reactors
32(4)
2.4 Experimental Complex Based on the VIR-2M Reactor
36(3)
2.5 EBR-L Experimental Setup
39(3)
2.6 "Stand B" for Studying NPL Characteristics
42(1)
2.7 Experiments with the SPR and TRIGA Reactors
43(10)
References
48(5)
3 Investigations of Reactor-Pumped Gas NPLs
53(50)
3.1 IR Lasers Operating on Transitions of the Xe, Kr, and Ar Atoms
53(19)
Research by VNIIEF
53(10)
Research by VNIITF
63(1)
Research Outside of Russia
64(4)
Efficiencies of NPLs Operating on Transitions of Xe, Kr, and Ar Atoms
68(1)
Influence of Temperature and Gas Impurities on Laser Characteristics
69(3)
3.2 Visible-Range Lasers Operating on Ne Atom Transitions
72(5)
3.3 Metal Vapor Lasers
77(4)
Mercury-Vapor Lasers
77(1)
Cadmium- and Zinc-Vapor Lasers
78(3)
3.4 Lasers Operating on Transitions of C, N, and Cl Atoms
81(2)
3.5 Lasers Operating on Transitions of Molecules CO, N2+, and CO2
83(2)
CO Laser
83(1)
N2+ Laser
83(1)
CO2 Laser
84(1)
3.6 Excimer, Iodine, and Chemical Lasers
85(3)
Excimer Laser Media
85(1)
Iodine Lasers
86(1)
Chemical Lasers
87(1)
3.7 Lasers Excited by Fast Neutrons
88(15)
References
90(13)
4 Basic Parameters of Nuclear-Excited Plasma
103(40)
4.1 Initial Stage of Ionization Processes in Gas Media
103(11)
Dependence of Ionization Processes on the Type of Charged Particles
103(2)
Plasma Track Structure
105(1)
Kinetics of Gas Ionization
106(8)
4.2 Formation of Ions and Excited Atoms at the Initial Ionization Stage
114(8)
4.3 Plasmochemical Processes
122(10)
Kinetics of Plasma Processes for a Single-Component Mixture
122(6)
Calculation of Plasma Parameters for Gas NPL Mixtures
128(3)
Experimental Research
131(1)
4.4 Luminescence Characteristics
132(11)
Rare Gases and their Mixtures
132(2)
Mixtures of Rare Gases with Molecular Gases
134(1)
Mixtures of Rare Gases and Metal Vapors
135(1)
References
136(7)
5 Lasing Mechanisms and Kinetic Models of NPLs
143(40)
5.1 Introduction
143(1)
5.2 Mechanisms of Excitation of Laser Media. Ultimate Efficiency
143(5)
5.3 Family of Lasers Operating on IR Transitions of Rare Gas Atoms
148(14)
Populating of Upper Lasing Levels
149(5)
Formation of the Laser Radiation Spectrum
154(3)
Kinetic Models
157(5)
5.4 Lasers Based on 3p-3s Transitions of the Ne Atom
162(4)
5.5 Lasers Based on Rare Gas Mixtures with Metal Vapors
166(5)
Laser Media Based on Cd and Zn Vapors
167(3)
Hg Vapor Lasers
170(1)
5.6 Lasers Based on Transitions of C, N, O, and Cl Atoms
171(1)
5.7 Molecular Lasers
172(11)
CO Laser
172(1)
N2+ Laser
172(1)
Other Media using Molecule Transitions
173(1)
References
173(10)
6 Nuclear-Pumped Laser Devices Based on Gas Media
183(26)
6.1 LM-4/BIGR Experimental Complex
183(6)
6.2 Reactor Laser Model
189(5)
6.3 Optical Nuclear Pumped Amplifier
194(3)
6.4 LIRA Laser-Reactor Setup
197(5)
6.5 Development of Laser Setups Based on Gas NPLs in the United States
202(7)
References
204(5)
7 Energy Deposition in Gas NPL Active Media
209(38)
7.1 Comparison of Basic Methods of NPL Excitation
209(4)
7.2 On Methods of Calculating the Energy Deposition of Fission Fragments
213(5)
7.3 Influence of Inhomogeneities of Uranium-Containing Layers on Energy Deposition
218(7)
Periodic Symmetrical Inhomogeneities
218(4)
Inhomogeneities in the Form of Craters
222(3)
7.4 Results of Experiments to Determine the Energy Deposition
225(11)
Experiments When the Excitation Duration is ≤0.4 ms
226(1)
Experiments with Excitation Durations ≥3 ms
227(9)
7.5 Optimization of the Energy Deposition
236(11)
References
243(4)
8 Optical Inhomogeneities in Sealed NPLs
247(48)
8.1 Inhomogeneities in Cylindrical Cells
247(18)
Calculation Procedure
247(3)
Dynamics of Inhomogeneity Development in the Pulsed and Quasi-Stationary Excitation Modes
250(15)
8.2 Density Inhomogeneities for Planar Uranium Layers
265(8)
Calculations Based on the Approximation of Infinitely Extended Uranium Layers
265(1)
Calculation of Density Inhomogeneities For the Plane-Parallel Distribution of Uranium Layers with Finite Dimensions
266(7)
8.3 Possibilities for NPL Parameter Optimization
273(8)
Dynamics of Near-Wall Passive Zone Development
273(2)
Exponential Increase in Power Deposition
275(2)
Variations in Initial Gas Pressure
277(1)
Synchronous Cell Wall Heating
278(3)
8.4 Dynamics of NPL Cavity Stability Variations
281(14)
Calculation Technique
282(5)
Calculation Results
287(4)
References
291(4)
9 Specific Features of NPLs with a Flowing Gas Medium
295(78)
9.1 Longitudinal Gas Flowing
295(2)
9.2 Effect of Turbulent Pulses on the Optical Quality of a Medium
297(9)
Turbulent Flow Structure
298(3)
Mixing and Temperature Fluctuations in an Inhomogeneously Heated Medium
301(1)
Turbulent Pulses in an Optically Active Medium
302(4)
9.3 Transverse Gas Flowing
306(67)
Radiators
306(24)
Gas Flow Rate Effect on Output Power of Gas-Flowing Lasers
330(9)
Possibility of Passive Zone Elimination
339(10)
Calculations of Spatial Inhomogeneities in NPLs with Gas Circulation
349(10)
Radiation Intensity Distribution in Gas-Flowing Laser
359(4)
Permissible Gas Overheating and Cavity Stability
363(5)
References
368(5)
10 Design Concepts for Stationary Reactor Lasers
373(22)
10.1 Main Types of Stationary Reactor Lasers
373(3)
10.2 A Reactor Laser with Longitudinal Circulation of the Gas Medium (General Physics Institute [ IOFAN]-Moscow Engineering and Physics Institute [ MIFI])
376(2)
10.3 Conceptual Designs for Reactor Lasers (VNIIEF)
378(3)
RLs with Transverse Gas Flow
379(1)
Heat-Capacity RLs
379(2)
10.4 Thin-Film Uranium Fuel
381(3)
10.5 Shaping of Laser Radiation
384(5)
Schemes for the Convergence of Light Beams Using Linear Optical Methods
384(2)
Coherent Addition of the Radiation of RL Laser Channels
386(3)
10.6 Possible Uses for Reactor Lasers
389(6)
References
390(5)
11 Studies of Condensed-Media NPLs
395(28)
11.1 Condensed-Media Lasers with Direct Nuclear Pumping
396(7)
Solid-State Laser Media
396(1)
Liquid Laser Media Based on Organometallic Compounds
397(2)
Inorganic Liquid Laser Media
399(2)
Semiconductor Lasers
401(2)
11.2 Pumping of Condensed Laser Medium Using Nuclear-Optical Converters
403(8)
The Main Characteristics of a NOC
404(2)
The Application of NOCs for Laser Pumping
406(3)
Other Applications for NOCs
409(2)
11.3 Some Schemes for Nuclear Laser Devices Using Condensed Media
411(12)
Colloidal Nuclear Reactor → Optical Thermal Emission → Liquid Laser Medium
411(1)
Reactor with an Aerosol Core → Luminescent Radiation → Solid-State Laser Medium
411(2)
Reactor (Uranium Layers or Uranium Hexafluoride) → Optical Thermal Emission → Solid-State Laser Medium
413(2)
"Start-Up" Reactor → Subcritical Multiplicator Block with a Laser Medium
415(1)
References
416(7)
12 Gas Lasers Excited by Radiation from Nuclear Explosions
423(10)
12.1 The First Experimental Studies
424(9)
Chemical HF -Lasers
425(2)
Excimer XeF -Lasers
427(4)
References
431(2)
13 Comments About Nuclear-Pumped Laser Research in the United States
433(19)
13.1 Introduction
433(3)
13.2 Comments About NPL Research in the United States
436(16)
Development Milestones
437(4)
Theoretical Studies in Support of U.S. NPL Research
441(7)
Follow-Up Studies
448(1)
Experimental Research During the 1980s
448(2)
Reactor Systems
450(1)
Applications
450(2)
References 452
George Miley, University of Illionis, ghmiley@illionis.edu

Sergey Petrovich Melnikov, The Russian Federal Nuclear Center (VNIIEF), melnikov@expd.vniief.ru

Alexandr Nikolaevich Sizov, The Russian Federal Nuclear Center (VNIIEF)

Anatolii Alexandrovich Sinyanskii,  The Russian Federal Nuclear Center (VNIIEF)