Atnaujinkite slapukų nuostatas

El. knyga: Lattice Path Combinatorics and Applications

Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Developments in Mathematics 58
  • Išleidimo metai: 02-Mar-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030111021
  • Formatas: EPUB+DRM
  • Serija: Developments in Mathematics 58
  • Išleidimo metai: 02-Mar-2019
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030111021

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The most recent methods in various branches of lattice path and enumerative combinatorics along with relevant applications are nicely grouped together and represented in this research contributed volume. Contributions to this edited volume will be mainly research articles however it will also include several captivating, expository articles (along with pictures) on the life and mathematical work of leading researchers in lattice path combinatorics and beyond. There will be four or five expository articles in memory of Shreeram Shankar Abhyankar and Philippe Flajolet and honoring George Andrews and Lajos Takács. There may be another brief article  in memory of Professors Jagdish Narayan Srivastava and Joti Lal Jain.

New research results include the kernel method developed by Flajolet and others for counting different classes of lattice paths continues to produce new results in counting lattice paths. The recent investigation of Fishburn numbers has led to interesting counting interpretations and a family of fascinating congruences.  Formulas for new methods to obtain the number of Fq-rational points of Schubert varieties in Grassmannians continues to have research interest and will be presented here. Topics to be included are far reaching and will include lattice path enumeration, tilings, bijections between paths and other combinatoric structures, non-intersecting lattice paths, varieties, Young tableaux, partitions, enumerative combinatorics, discrete distributions, applications to queueing theory and other continuous time models, graph theory and applications.  Many leading mathematicians who spoke at the conference from which this volume derives, are expected to send contributions including. This volume also presents the stimulating ideas of some exciting newcomers to the Lattice Path Combinatorics Conference series; “The 8th Conference on Lattice Path Combinatorics and Applications” provided opportunities for new collaborations; some of the products of these collaborations will also appear in this book.

This book will have interest for researchers in lattice path combinatorics and enumerative combinatorics. This will include subsets of researchers in mathematics, statistics, operations research and computer science. The applications of the material covered in this edited volume extends beyond the primary audience to scholars interested queuing theory, graph theory, tiling, partitions, distributions, etc. An attractive bonus within our book is the collection of special articles describing the top recent researchers in this area of study and documenting the interesting history of who, when and how these beautiful combinatorial results were originally discovered.

 

Professor Lajos Takacs: A Tribute
1(28)
Aliakbar Montazer Haghighi
Sri Gopal Mohanty
The Distribution of the Local Time of Brownian Motion with Drift
29(14)
Lajos Takacs
Reflections on Shreeram Abhyankar
43(4)
Krishnaswami Alladi
My Association and Collaboration with George Andrews
47(24)
Krishnaswami Alladi
A Refinement of the Alladi-Schur Theorem
71(7)
George E. Andrews
Explicit Formulas for Enumeration of Lattice Paths: Basketball and the Kernel Method
78(41)
Cyril Banderier
Christian Krattenthaler
Alan Krinik
Dmitry Kruchinin
Vladimir Kruchinin
David Nguyen
Michael Wallner
The Kernel Method for Lattice Paths Below a Line of Rational Slope
119(36)
Cyril Banderier
Michael Wallner
Enumeration of Colored Dyck Paths Via Partial Bell Polynomials
155(11)
Daniel Birmajer
Juan B. Gil
Peter R. W. McNamara
Michael D. Weiner
A Review of the Basic Discrete q-Distributions
166(28)
Ch. A. Charalambides
Families of Parking Functions Counted by the Schroder and Baxter Numbers
194(32)
Robert Cori
Enrica Duchi
Veronica Guerrini
Simone Rinaldi
Some Tilings, Colorings and Lattice Paths via Stern Polynomials
226(24)
Karl Dilcher
Larry Ericksen
p-Rook Numbers and Cycle Counting in Cp Sn
250(33)
James Haglund
Jeffrey B. Remmel
Meesue Yoo
Asymptotic Behaviour of Certain q-Poisson, q-Binomial and Negative q-Binomial Distributions
283(24)
Andreas Kyriakoussis
Malvina Vamvakari
Asymptotic Estimates for Queueing Systems with Time-Varying Periodic Transition Rates
307(20)
Barbara Margolius
A Combinatorial Analysis of the M/M[ m]/1 Queue
327(16)
Guven Mercankosk
Gopalan M. Nair
Laws Relating Runs, Long Runs, and Steps in Gambler's Ruin, with Persistence in Two Strata
343(39)
Gregory J. Morrow
Paired Patterns in Lattice Paths
382
Ran Pan
Jeffrey B. Remmel