Atnaujinkite slapukų nuostatas

El. knyga: Learning Theory from First Principles

  • Formatas: 496 pages
  • Išleidimo metai: 24-Dec-2024
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262381376
Kitos knygos pagal šią temą:
  • Formatas: 496 pages
  • Išleidimo metai: 24-Dec-2024
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262381376
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"The aim of this book is to provide the simplest formulations that can be derived "from first principles" with simple arguments"--

A comprehensive and cutting-edge introduction to the foundations and modern applications of learning theory.

Research has exploded in the field of machine learning resulting in complex mathematical arguments that are hard to grasp for new comers. . In this accessible textbook, Francis Bach presents the foundations and latest advances of learning theory for graduate students as well as researchers who want to acquire a basic mathematical understanding of the most widely used machine learning architectures. Taking the position that learning theory does not exist outside of algorithms that can be run in practice, this book focuses on the theoretical analysis of learning algorithms as it relates to their practical performance. Bach provides the simplest formulations that can be derived from first principles, constructing mathematically rigorous results and proofs without overwhelming students. 

  • Provides a balanced and unified treatment of most prevalent machine learning methods 
  • Emphasizes practical application and features only commonly used algorithmic frameworks 
  • Covers modern topics not found in existing texts, such as overparameterized models and structured prediction 
  • Integrates coverage of statistical theory, optimization theory, and approximation theory
  • Focuses on adaptivity, allowing distinctions between various learning techniques
  • Hands-on experiments, illustrative examples, and accompanying code link theoretical guarantees to practical behaviors