Atnaujinkite slapukų nuostatas

El. knyga: Lectures in Algebraic Combinatorics: Young's Construction, Seminormal Representations, SL(2) Representations, Heaps, Basics on Finite Fields

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2277
  • Išleidimo metai: 06-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030583736
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2277
  • Išleidimo metai: 06-Oct-2020
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030583736
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Capturing Adriano Garsia's unique perspective on essential topics in algebraic combinatorics, this book consists of selected, classic notes on a number of topics based on lectures held at the University of California, San Diego over the past few decades.

The topics presented share a common theme of describing interesting interplays between algebraic topics such as representation theory and elegant structures which are sometimes thought of as being outside the purview of classical combinatorics. The lectures reflect Garsia’s inimitable narrative style and his exceptional expository ability.

The preface presents the historical viewpoint as well as Garsia's personal insights into the subject matter. The lectures then start with a clear treatment of Alfred Young's construction of the irreducible representations of the symmetric group, seminormal representations and Morphy elements. This is followed by an elegant application of SL(2) representations to algebraic combinatorics. The last two lectures are on heaps, continued fractions and orthogonal polynomials with applications, and finally there is an exposition on the theory of finite fields.

The book is aimed at graduate students and researchers in the field.


1 Alfred Young's Construction of the Irreducible Representations of SN
1(34)
1.1 Introduction
1(1)
1.2 The Natural Representation Matrices
1(4)
1.3 Young's Tableau Idempotents
5(5)
1.4 Semisimplicity of Algebras
10(3)
1.5 Young's Matrix Units for A(Sn)
13(12)
1.6 Properties of the Representations {Aλ}λ and Their Characters
25(6)
1.7 The Frobenius Map
31(4)
2 Young's Seminormal Representation, Murphy Elements, and Content Evaluations
35(62)
2.1 Introduction
35(1)
2.2 The Young Idempotents
36(6)
2.3 Young's Seminormal Units
42(13)
2.4 The Murphy Elements
55(8)
2.5 The Seminormal Matrices
63(10)
2.6 Murphy Elements and Conjugacy Classes
73(24)
3 On Finite Dimensional sl(2) Representations and an Application to Algebraic Combinatorics
97(40)
3.1 Basic Identities
97(5)
3.2 Diagonalizability of H
102(21)
3.3 Spernerity of L[ m, n]
123(14)
4 Heaps, Continued Fractions, and Orthogonal Polynomials
137(50)
4.1 Introduction
137(1)
4.2 Heaps of Monomers and Dimers
137(3)
4.3 The Cartier-Foata Languages
140(6)
4.4 Orthogonal Polynomials and Continued Fractions
146(6)
4.5 Moments and Motzkin Paths
152(12)
4.6 Chebyshev Polynomials
164(4)
4.7 The Rogers-Ramanujan Continued Fraction
168(5)
4.8 Partitions and Hermite Polynomials
173(8)
4.9 The Legendre Polynomials
181(2)
4.10 The Laguerre Polynomials
183(4)
5 Finite Fields
187(38)
5.1 Introduction
187(1)
5.2 The Euclidean Algorithm
188(4)
5.3 Polynomial Factorization
192(5)
5.4 Cyclotomic Polynomials
197(12)
5.5 The Frobenius Map
209(12)
5.6 A Factorization Algorithm
221(4)
Glossary 225(4)
References 229