Atnaujinkite slapukų nuostatas

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

These three lectures cover a certain aspect of complexity and black holes, namely the relation to the second law of thermodynamics. The first lecture describes the meaning of quantum complexity, the analogy between entropy and complexity, and the second law of complexity. Lecture two reviews the connection between the second law of complexity and the interior of black holes. Prof. L. Susskind discusses how firewalls are related to periods of non-increasing complexity which typically only occur after an exponentially long time. The final lecture is about the thermodynamics of complexity, and uncomplexity as a resource for doing computational work. The author explains the remarkable power of one clean qubit, in both computational terms and in space-time terms.





This book is intended for graduate students and researchers who want to take the first steps towards the mysteries of black holes and their complexity.
Part I Lecture I: Hilbert Space is Huge
1 Introduction
3(2)
2 How Huge?
5(2)
3 Volume of CP(N)
7(2)
4 Relative Complexity
9(2)
5 Dual Role of Unitaries
11(2)
6 Volume of St/(2k)
13(2)
7 Exploring SU(2K)
15(6)
7.1 Relative Complexity of Unitaries
17(2)
7.2 Complexity is Discontinuous
19(2)
8 Graph Theory Perspective
21(10)
8.1 Collisions and Loops
24(7)
9 The Second Law of Quantum Complexity
31(8)
9.1 Hamiltonian Evolution
34(5)
Part II Lecture II: Black Holes and the Second Law of Complexity
10 Introduction
39(2)
11 The Black Hole-Quantum Circuit Correspondence
41(4)
11.1 Two Problems
41(1)
11.2 Circuits and Black Holes
42(3)
12 The Growth of Wormholes
45(8)
12.1 Properties of Growth
49(1)
12.2 Rindler Time and CV
49(4)
13 Exponential Time Breakdown of GR
53(2)
13.1 C = V
54(1)
14 Precursors
55(6)
14.1 The Epidemic Model
55(3)
14.2 Lyapunov and Rindler
58(1)
14.3 Back to Size and Complexity
58(3)
15 Precursors and Black Holes
61(4)
15.1 Instability of White Holes
63(2)
16 Complexity and Firewalls
65(8)
16.1 Firewalls are Fragile
68(1)
16.2 What Happens After Exponential Time?
69(2)
16.3 The Fragility of Complexity Equilibrium
71(2)
17 Do Typical States Have Firewalls?
73(6)
17.1 AdS Black Holes
73(1)
17.2 Evaporating Black Holes
74(5)
Part III Lecture III: The Thermodynamics of Complexity
18 Introduction
79(2)
19 Negentropy
81(2)
20 Uncomplexity
83(4)
20.1 The Auxiliary System
83(1)
20.2 Combining Auxiliary Systems
84(3)
21 Uncomplexity as a Resource
87(2)
22 The Power of One Clean Qubit
89(4)
22.1 The Protocol
90(1)
22.2 Expending Uncomplexity and Negentropy
91(2)
23 Spacetime and Uncomplexity
93(4)
23.1 Ca
93(1)
23.2 Geometric Interpretation of Uncomplexity
94(3)
Appendix: Conclusion 97
Leonard Susskind is an American physicist, who is professor of theoretical physics at Stanford University, and founding director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology.He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.Susskind is widely regarded as one of the fathers of string theory. He was the first to give a precise string-theoretic interpretation of the holographic principle in 1995 and the first to introduce the idea of the string theory landscape in 2003.

Susskind was awarded the 1998 J. J. Sakurai Prize, and the 2018 Oskar Klein Medal.