Atnaujinkite slapukų nuostatas

El. knyga: Lectures On Differential Geometry

(California State Polytechnic Univ, Usa), (Nankai Univ, China), (Peking Univ, China)
  • Formatas: 368 pages
  • Serija: Series On University Mathematics 1
  • Išleidimo metai: 30-Nov-1999
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813102989
Kitos knygos pagal šią temą:
  • Formatas: 368 pages
  • Serija: Series On University Mathematics 1
  • Išleidimo metai: 30-Nov-1999
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789813102989
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is a translation of an authoritative introductory text based on a lecture series delivered by the renowned differential geometer, Professor S S Chern in Beijing University in 1980. The original Chinese text, authored by Professor Chern and Professor Wei-Huan Chen, was a unique contribution to the mathematics literature, combining simplicity and economy of approach with depth of contents. The present translation is aimed at a wide audience, including (but not limited to) advanced undergraduate and graduate students in mathematics, as well as physicists interested in the diverse applications of differential geometry to physics. In addition to a thorough treatment of the fundamentals of manifold theory, exterior algebra, the exterior calculus, connections on fiber bundles, Riemannian geometry, Lie groups and moving frames, and complex manifolds (with a succinct introduction to the theory of Chern classes), and an appendix on the relationship between differential geometry and theoretical physics, this book includes a new chapter on Finsler geometry and a new appendix on the history and recent developments of differential geometry, the latter prepared specially for this edition by Professor Chern to bring the text into perspectives.
Differentiable Manifolds
1(38)
Definition of Differentiable manifolds
1(8)
Tangent Spaces
9(9)
Submanifolds
18(11)
Frobenius' Theorem
29(10)
Multilinear Algebra
39(26)
Tensor Products
39(8)
Tensors
47(5)
Exterior Algebra
52(13)
Exterior Differential Calculus
65(36)
Tensor Bundles and Vector Bundles
65(9)
Exterior Differentiation
74(11)
Integrals of Differential Forms
85(7)
Stokes' Formula
92(9)
Connections
101(32)
Connections on Vector Bundles
101(12)
Affine Connections
113(8)
Connections on Frame Bundles
121(12)
Riemannian Geometry
133(40)
The Fundamental Theorem of Riemannian Geometry
133(10)
Geodesic Normal Coordinates
143(12)
Sectional Curvature
155(7)
The Gauss--Bonnet Theorem
162(11)
Lie Groups and Moving Frames
173(48)
Lie Groups
173(13)
Lie Transformation Groups
186(12)
The Method of Moving Frames
198(12)
Theory of Surfaces
210(11)
Complex Manifolds
221(44)
Complex Manifolds
221(6)
The Complex Structure on a Vector Space
227(9)
Almost Complex Manifolds
236(8)
Connections on Complex Vector Bundles
244(12)
Hermitian Manifolds and Kahlerian manifolds
256(9)
Finsler Geometry
265(66)
Preliminaries
265(2)
Geometry on the Projectivised Tangent Bundle (PTM) and the Hilbert Form
267(6)
The Chern Connection
273(15)
Determination of the Connection
274(6)
The Cartan Tensor and Characterization of Riemannian Geometry
280(3)
Explicit Formulas for the Connection Forms in Natural Coordinates
283(5)
Structure Equations and the Flag Curvature
288(9)
The Curvature Tensor
289(4)
The Flag Curvature and the Ricci Curvature
293(2)
Special Finsler Spaces
295(2)
The First Variation of Arc Length and Geodesics
297(9)
The Second Variation of Arc Length and Jacobi Fields
306(8)
Completeness and the Hopf-Rinow Theorem
314(11)
The Theorems of Bonnet-Myers and Synge
325(6)
A Historical Notes 331(4)
A-1 Classical Differential Geometry
331(1)
A-2 Riemannian Geometry
331(1)
A-3 Manifolds
332(1)
A-4 Global Geometry
332(3)
B Differential Geometry and Theoretical Physics 335(8)
B-1 Dynamics and Moving Frames
336(2)
B-2 Theory of Surfaces, Solitons and the Sigma Model
338(2)
B-3 Gauge Field Theory
340(1)
B-4 Conclusion
341(2)
References 343(4)
Index 347