Preface |
|
vii | |
|
|
1 | (22) |
|
|
1 | (5) |
|
1.1.1 Space and Coordinatization |
|
|
1 | (2) |
|
1.1.2 The implicit function theorem |
|
|
3 | (3) |
|
|
6 | (17) |
|
|
6 | (3) |
|
1.2.2 Partitions of unity |
|
|
9 | (1) |
|
|
10 | (10) |
|
1.2.4 How many manifolds are there? |
|
|
20 | (3) |
|
2 Natural Constructions on Manifolds |
|
|
23 | (56) |
|
|
23 | (18) |
|
|
23 | (4) |
|
|
27 | (2) |
|
|
29 | (4) |
|
|
33 | (4) |
|
2.1.5 Some examples of vector bundles |
|
|
37 | (4) |
|
2.2 A linear algebra interlude |
|
|
41 | (26) |
|
|
41 | (5) |
|
2.2.2 Symmetric and skew-symmetric tensors |
|
|
46 | (7) |
|
|
53 | (3) |
|
|
56 | (8) |
|
2.2.5 Some complex linear algebra |
|
|
64 | (3) |
|
|
67 | (12) |
|
2.3.1 Operations with vector bundles |
|
|
67 | (2) |
|
|
69 | (4) |
|
|
73 | (6) |
|
|
79 | (60) |
|
|
79 | (9) |
|
|
79 | (2) |
|
|
81 | (5) |
|
|
86 | (2) |
|
|
88 | (6) |
|
3.2.1 The exterior derivative |
|
|
88 | (5) |
|
|
93 | (1) |
|
3.3 Connections on vector bundles |
|
|
94 | (17) |
|
3.3.1 Covariant derivatives |
|
|
94 | (6) |
|
|
100 | (1) |
|
3.3.3 The curvature of a connection |
|
|
101 | (4) |
|
|
105 | (3) |
|
3.3.5 The Bianchi identities |
|
|
108 | (1) |
|
3.3.6 Connections on tangent bundles |
|
|
109 | (2) |
|
3.4 Integration on manifolds |
|
|
111 | (28) |
|
3.4.1 Integration of 1-densities |
|
|
111 | (4) |
|
3.4.2 Orientability and integration of differential forms |
|
|
115 | (8) |
|
|
123 | (4) |
|
3.4.4 Representations and characters of compact Lie groups |
|
|
127 | (6) |
|
|
133 | (6) |
|
|
139 | (62) |
|
|
139 | (26) |
|
4.1.1 Definitions and examples |
|
|
139 | (4) |
|
4.1.2 The Levi-Civita connection |
|
|
143 | (4) |
|
4.1.3 The exponential map and normal coordinates |
|
|
147 | (3) |
|
4.1.4 The length minimizing property of geodesies |
|
|
150 | (5) |
|
4.1.5 Calculus on Riemann manifolds |
|
|
155 | (10) |
|
4.2 The Riemann curvature |
|
|
165 | (36) |
|
4.2.1 Definitions and properties |
|
|
165 | (4) |
|
|
169 | (3) |
|
4.2.3 Cartan's moving frame method |
|
|
172 | (3) |
|
4.2.4 The geometry of submanifolds |
|
|
175 | (7) |
|
4.2.5 Correlators and their geometry |
|
|
182 | (10) |
|
4.2.6 The Gauss-Bonnet theorem for oriented surfaces |
|
|
192 | (9) |
|
5 Elements of the Calculus of Variations |
|
|
201 | (26) |
|
5.1 The least action principle |
|
|
201 | (9) |
|
5.1.1 The 1-dimensional Euler-Lagrange equations |
|
|
201 | (6) |
|
5.1.2 Noether's conservation principle |
|
|
207 | (3) |
|
5.2 The variational theory of geodesies |
|
|
210 | (17) |
|
5.2.1 Variational formulae |
|
|
211 | (3) |
|
|
214 | (6) |
|
5.2.3 The Hamilton-Jacobi equations |
|
|
220 | (7) |
|
6 The Fundamental Group and Covering Spaces |
|
|
227 | (14) |
|
6.1 The fundamental group |
|
|
228 | (5) |
|
|
228 | (4) |
|
6.1.2 Of categories and functors |
|
|
232 | (1) |
|
|
233 | (8) |
|
6.2.1 Definitions and examples |
|
|
233 | (2) |
|
6.2.2 Unique lifting property |
|
|
235 | (1) |
|
6.2.3 Homotopy lifting property |
|
|
236 | (1) |
|
6.2.4 On the existence of lifts |
|
|
237 | (2) |
|
6.2.5 The universal cover and the fundamental group |
|
|
239 | (2) |
|
|
241 | (88) |
|
|
241 | (24) |
|
7.1.1 Speculations around the Poincare" lemma |
|
|
241 | (4) |
|
|
245 | (2) |
|
7.1.3 Very little homological algebra |
|
|
247 | (7) |
|
7.1.4 Functorial properties of the DeRham cohomology |
|
|
254 | (3) |
|
7.1.5 Some simple examples |
|
|
257 | (2) |
|
7.1.6 The Mayer-Vietoris principle |
|
|
259 | (3) |
|
7.1.7 The Kunneth formula |
|
|
262 | (3) |
|
7.2 The Poincare" duality |
|
|
265 | (7) |
|
7.2.1 Cohomology with compact supports |
|
|
265 | (3) |
|
7.2.2 The Poincare" duality |
|
|
268 | (4) |
|
|
272 | (19) |
|
7.3.1 Cycles and their duals |
|
|
272 | (5) |
|
7.3.2 Intersection theory |
|
|
277 | (5) |
|
7.3.3 The topological degree |
|
|
282 | (2) |
|
7.3.4 The Thorn isomorphism theorem |
|
|
284 | (3) |
|
7.3.5 Gauss-Bonnet revisited |
|
|
287 | (4) |
|
7.4 Symmetry and topology |
|
|
291 | (21) |
|
|
291 | (3) |
|
7.4.2 Symmetry and cohomology |
|
|
294 | (4) |
|
7.4.3 The cohomology of compact Lie groups |
|
|
298 | (1) |
|
7.4.4 Invariant forms on Grassmannians and Weyl's integral formula |
|
|
299 | (7) |
|
7.4.5 The Poincare" polynomial of a complex Grassmannian |
|
|
306 | (6) |
|
|
312 | (17) |
|
7.5.1 Sheaves and presheaves |
|
|
313 | (4) |
|
|
317 | (12) |
|
|
329 | (44) |
|
|
329 | (14) |
|
8.1.1 Connections in principal G-bundles |
|
|
329 | (6) |
|
|
335 | (1) |
|
8.1.3 Invariant polynomials |
|
|
336 | (3) |
|
8.1.4 The Chern-Weil Theory |
|
|
339 | (4) |
|
|
343 | (14) |
|
8.2.1 The invariants of the torus Tn |
|
|
343 | (1) |
|
|
343 | (3) |
|
|
346 | (2) |
|
|
348 | (3) |
|
|
351 | (6) |
|
8.3 Computing characteristic classes |
|
|
357 | (16) |
|
|
358 | (5) |
|
8.3.2 The Gauss-Bonnet-Chern theorem |
|
|
363 | (10) |
|
9 Classical Integral Geometry |
|
|
373 | (78) |
|
9.1 The integral geometry of real Grassmannians |
|
|
373 | (25) |
|
|
373 | (13) |
|
9.1.2 Invariant measures on linear Grassmannians |
|
|
386 | (9) |
|
9.1.3 Affine Grassmannians |
|
|
395 | (3) |
|
9.2 Gauss-Bonnet again?!? |
|
|
398 | (11) |
|
9.2.1 The shape operator and the second fundamental form |
|
|
398 | (3) |
|
9.2.2 The Gauss-Bonnet theorem for hypersurfaces of an Euclidean space |
|
|
401 | (4) |
|
9.2.3 Gauss-Bonnet theorem for domains in an Euclidean space |
|
|
405 | (4) |
|
|
409 | (42) |
|
|
409 | (5) |
|
9.3.2 Invariants of the orthogonal group |
|
|
414 | (4) |
|
9.3.3 The tube formula and curvature measures |
|
|
418 | (11) |
|
9.3.4 Tube formula ⇒ Gauss-Bonnet formula for arbitrary submanifolds of an Euclidean space |
|
|
429 | (2) |
|
9.3.5 Curvature measures of domains in an Euclidean space |
|
|
431 | (2) |
|
9.3.6 Crofton formulae for domains of an Euclidean space |
|
|
433 | (10) |
|
9.3.7 Crofton formulae for submanifolds of an Euclidean space |
|
|
443 | (8) |
|
10 Elliptic Equations on Manifolds |
|
|
451 | (72) |
|
10.1 Partial differential operators: algebraic aspects |
|
|
451 | (13) |
|
|
451 | (6) |
|
|
457 | (2) |
|
|
459 | (5) |
|
10.2 Functional framework |
|
|
464 | (20) |
|
10.2.1 Sobolev spaces in RN |
|
|
464 | (7) |
|
10.2.2 Embedding theorems: integrability properties |
|
|
471 | (5) |
|
10.2.3 Embedding theorems: differentiability properties |
|
|
476 | (4) |
|
10.2.4 Functional spaces on manifolds |
|
|
480 | (4) |
|
10.3 Elliptic partial differential operators: analytic aspects |
|
|
484 | (20) |
|
10.3.1 Elliptic estimates in RN |
|
|
485 | (4) |
|
10.3.2 Elliptic regularity |
|
|
489 | (5) |
|
10.3.3 An application: prescribing the curvature of surfaces |
|
|
494 | (10) |
|
10.4 Elliptic operators on compact manifolds |
|
|
504 | (19) |
|
|
504 | (9) |
|
|
513 | (5) |
|
|
518 | (5) |
|
|
523 | (88) |
|
11.1 Generalized functions and currents |
|
|
523 | (13) |
|
11.1.1 Generalized functions and operations withy them |
|
|
523 | (5) |
|
|
528 | (1) |
|
11.1.3 Temperate distributions and the Fourier transform |
|
|
529 | (2) |
|
11.1.4 Linear differential equations with distributional data |
|
|
531 | (5) |
|
11.2 Important families of generalized functions |
|
|
536 | (12) |
|
11.2.1 Some classical generalized functions on the real axis |
|
|
536 | (6) |
|
11.2.2 Homogeneous generalized functions |
|
|
542 | (6) |
|
|
548 | (26) |
|
11.3.1 Fundamental solutions of the wave |
|
|
548 | (2) |
|
|
550 | (17) |
|
11.3.3 Local parametrices for the wave equation with variable coefficients |
|
|
567 | (7) |
|
|
574 | (37) |
|
11.4.1 The spectral function of the Laplacian on a compact manifold |
|
|
574 | (6) |
|
11.4.2 Short time asymptotics for the wave kernel |
|
|
580 | (8) |
|
11.4.3 Spectral function asymptotics |
|
|
588 | (5) |
|
11.4.4 Spectral estimates of smoothing operators |
|
|
593 | (5) |
|
11.4.5 Spectral perestroika |
|
|
598 | (13) |
|
|
611 | (58) |
|
12.1 The structure of Dirac operators |
|
|
611 | (33) |
|
12.1.1 Basic definitions and examples |
|
|
611 | (3) |
|
|
614 | (3) |
|
12.1.3 Clifford modules: the even case |
|
|
617 | (5) |
|
12.1.4 Clifford modules: the odd case |
|
|
622 | (1) |
|
|
623 | (2) |
|
|
625 | (8) |
|
12.1.7 The complex spin group |
|
|
633 | (2) |
|
12.1.8 Low dimensional examples |
|
|
635 | (5) |
|
|
640 | (4) |
|
12.2 Fundamental examples |
|
|
644 | (25) |
|
12.2.1 The Hodge-DeRham operator |
|
|
644 | (4) |
|
12.2.2 The Hodge-Dolbeault operator |
|
|
648 | (6) |
|
12.2.3 The spin Dirac operator |
|
|
654 | (6) |
|
12.2.4 The spin0 Dirac operator |
|
|
660 | (9) |
Bibliography |
|
669 | (6) |
Index |
|
675 | |