Atnaujinkite slapukų nuostatas

El. knyga: Lectures on K3 Surfaces

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

K3 surfaces are central objects in mathematics and connect to string theory in physics. By studying the many rich aspects of these surfaces, this book surveys powerful techniques in algebraic geometry. Working from the basics to recent breakthroughs, it is suitable as a graduate text and reference for researchers.

K3 surfaces are central objects in modern algebraic geometry. This book examines this important class of Calabi–Yau manifolds from various perspectives in eighteen self-contained chapters. It starts with the basics and guides the reader to recent breakthroughs, such as the proof of the Tate conjecture for K3 surfaces and structural results on Chow groups. Powerful general techniques are introduced to study the many facets of K3 surfaces, including arithmetic, homological, and differential geometric aspects. In this context, the book covers Hodge structures, moduli spaces, periods, derived categories, birational techniques, Chow rings, and deformation theory. Famous open conjectures, for example the conjectures of Calabi, Weil, and Artin–Tate, are discussed in general and for K3 surfaces in particular, and each chapter ends with questions and open problems. Based on lectures at the advanced graduate level, this book is suitable for courses and as a reference for researchers.

Recenzijos

'K3 surfaces play something of a magical role in algebraic geometry and neighboring areas. They arise in astonishingly varied contexts, and the study of K3 surfaces has propelled the development of many of the most powerful tools in the field. The present lectures provide a comprehensive and wide-ranging survey of this fascinating subject. Suitable both for study and as a reference work, and written with Huybrechts's usual clarity of exposition, this book is destined to become the standard text on K3 surfaces.' Rob Lazarsfeld, State University of New York, Stony Brook 'This book will be extremely valuable to all mathematicians who are interested in K3 surfaces and related topics. It not only serves as an excellent introduction, but also covers a wide variety of advanced subjects, ranging from complex geometry to derived geometry and arithmetic.' Klaus Hulek, Leibniz Universität Hannover 'Since the nineteenth century, K3 surfaces have been a source of intriguing examples, problems and theorems. Huybrechts' book is a beautiful and reader-friendly presentation of the main results regarding this special class of varieties. The author fully succeeded in illustrating the richness of concepts and techniques which come into play in the theory of K3 surfaces.' Kieran G. O'Grady, Universitą degli Studi di Roma 'La Sapienza', Italy 'K3 surfaces play a ubiquitous role in algebraic geometry. At first glance they seem to be well understood and easy to describe, still they provide non-trivial examples of the most fundamental concepts: Hodge structures, moduli spaces, Chow ring, vector bundles, Picard and Brauer groups Huybrechts' book, written with the usual talent of the author, is the first to cover systematically all these aspects. It will be an invaluable reference for algebraic geometers.' Arnaud Beauville, Université de Nice, Sophia Antipolis ' the book covers many subjects and recent developments, and contains an encyclopedic total of 655 references, which will be very useful for researchers and graduate students. A reader who opens any page of the book will enjoy the subject there. This book will become one's favorite book.' Shigeyuki Kondo, MathSciNet 'The book is a welcome addition to the literature, especially since its scope ranges from a very good introduction to K3 surfaces to the more recent advances on these surfaces and related topics.' Felipe Zaldivar, MAA Reviews

Daugiau informacijos

Simple enough for detailed study, rich enough to show interesting behavior, K3 surfaces illuminate core methods in algebraic geometry.
Preface ix
1 Basic Definitions
1(15)
1 Algebraic K3 Surfaces
1(3)
2 Classical Invariants
4(4)
3 Complex K3 Surfaces
8(5)
4 More Examples
13(3)
2 Linear Systems
16(19)
1 General Results: Linear Systems, Curves, Vanishing
16(5)
2 Smooth Curves on K3 Surfaces
21(3)
3 Vanishing and Global Generation
24(7)
4 Existence of K3 Surfaces
31(4)
3 Hodge Structures
35(24)
1 Abstract Notions
35(7)
2 Geometry of Hodge Structures of Weight One and Two
42(7)
3 Endomorphism Fields and Mumford--Tate Groups
49(10)
4 Kuga--Satake Construction
59(22)
1 Clifford Algebra and Spin-Group
59(3)
2 From Weight Two to Weight One
62(8)
3 Kuga--Satake Varieties of Special Surfaces
70(3)
4 Appendix: Weil Conjectures
73(8)
5 Moduli Spaces of Polarized K3 Surfaces
81(19)
1 Moduli Functor
81(4)
2 Via Hilbert Schemes
85(6)
3 Local Structure
91(3)
4 As Deligne--Mumford Stack
94(6)
6 Periods
100(28)
1 Period Domains
100(5)
2 Local Period Map and Noether--Lefschetz Locus
105(7)
3 Global Period Map
112(5)
4 Moduli Spaces of K3 Surfaces via Periods and Applications
117(7)
5 Appendix: Kulikov Models
124(4)
7 Surjectivity of the Period Map and Global Torelli
128(20)
1 Deformation Equivalence of K3 Surfaces
128(3)
2 Moduli Space of Marked K3 Surfaces
131(2)
3 Twistor Lines
133(5)
4 Local and Global Surjectivity of the Period Map
138(1)
5 Global Torelli Theorem
139(6)
6 Other Approaches
145(3)
8 Ample Cone and Kahler Cone
148(27)
1 Ample and Nef Cone
148(4)
2 Chambers and Walls
152(5)
3 Effective Cone
157(8)
4 Cone Conjecture
165(5)
5 Kahler Cone
170(5)
9 Vector Bundles on K3 Surfaces
175(24)
1 Basic Techniques and First Examples
175(5)
2 Simple Vector Bundles and Brill--Noether General Curves
180(4)
3 Stability of Special Bundles
184(3)
4 Stability of the Tangent Bundle
187(6)
5 Appendix: Lifting K3 Surfaces
193(6)
10 Moduli Spaces of Sheaves on K3 Surfaces
199(20)
1 General Theory
199(6)
2 On K3 Surfaces
205(6)
3 Some Moduli Spaces
211(8)
11 Elliptic K3 Surfaces
219(35)
1 Singular Fibres
219(7)
2 Weierstrass Equation
226(6)
3 Mordell--Weil Group
232(6)
4 Jacobian Fibration
238(6)
5 Tate-Safarevic Group
244(10)
12 Chow Ring and Grothendieck Group
254(18)
1 General Facts on CH*(X) and K(X)
254(5)
2 Chow Groups: Mumford and Bloch--Beilinson
259(8)
3 Beauville--Voisin Ring
267(5)
13 Rational Curves on K3 Surfaces
272(27)
1 Existence Results
276(6)
2 Deformation Theory and Families of Elliptic Curves
282(6)
3 Arithmetic Aspects
288(5)
4 Counting of Rational Curves
293(2)
5 Density Results
295(4)
14 Lattices
299(31)
1 Existence, Uniqueness, and Embeddings of Lattices
305(6)
2 Orthogonal Group
311(3)
3 Embeddings of Picard, Transcendental, and Kummer Lattices
314(10)
4 Niemeier Lattices
324(6)
15 Automorphisms
330(28)
1 Symplectic Automorphisms
330(7)
2 Automorphisms via Periods
337(7)
3 Finite Groups of Symplectic Automorphisms
344(8)
4 Nikulin Involutions, Shioda--Inose Structures, and More
352(6)
16 Derived Categories
358(27)
1 Derived Categories and Fourier--Mukai Transforms
358(6)
2 Examples of (Auto)equivalences
364(5)
3 Action on Cohomology
369(7)
4 Twisted, Non-projective, and in Positive Characteristic
376(6)
5 Appendix: Twisted K3 Surfaces
382(3)
17 Picard Group
385(25)
1 Picard Groups of Complex K3 Surfaces
385(6)
2 Algebraic Aspects
391(12)
3 Tate Conjecture
403(7)
18 Brauer Group
410(28)
1 General Theory: Arithmetic, Geometric, Formal
410(10)
2 Finiteness of Brauer Group
420(7)
3 Height
427(11)
References 438(34)
Index 472(11)
List of Notation 483
Daniel Huybrechts is a professor at the Mathematical Institute of the University of Bonn. He previously held positions at the Université Denis Diderot Paris 7 and the University of Cologne. He is interested in algebraic geometry, particularly special geometries with rich algebraic, analytic, and arithmetic structures. His current work focuses on K3 surfaces and higher dimensional analogues. He has published four books.