Atnaujinkite slapukų nuostatas

El. knyga: Lectures in Logic and Set Theory: Volume 2, Set Theory

(York University, Toronto)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This two-volume work bridges the gap between introductory expositions of logic or set theory on one hand, and the research literature on the other. It can be used as a text in an advanced undergraduate or beginning graduate course in mathematics, computer science, or philosophy. The volumes are written in a user-friendly conversational lecture style that makes them equally effective for self-study or class use. Volume II, on formal (ZFC) set theory, incorporates a self-contained 'chapter 0' on proof techniques so that it is based on formal logic, in the style of Bourbaki. The emphasis on basic techniques will provide the reader with a solid foundation in set theory and provides a context for the presentation of advanced topics such as absoluteness, relative consistency results, two expositions of Godel's constructible universe, numerous ways of viewing recursion, and a chapter on Cohen forcing.

Recenzijos

"many readers, especially those with a philosophical bent, will find this book a good choice for the classroom." - Richard E. Hodel, Duke University

Daugiau informacijos

This two-volume work bridges the gap between introductory texts and the research literature.
Preface xi
A Bit of Logic: A User's Toolbox
1(98)
First Order Languages
7(13)
A Digression into the Metatheory: Informal Induction and Recursion
20(9)
Axioms and Rules of Inference
29(14)
Basic Metatheorems
43(10)
Semantics
53(13)
Defined Symbols
66(11)
Formalizing Interpretations
77(10)
The Incompleteness Theorems
87(7)
Exercises
94(5)
The Set-Theoretic Universe, Naively
99(15)
The ``Real Sets''
99(6)
A Naive Look at Russell's Paradox
105(1)
The Language of Axiomatic Set Theory
106(4)
On Names
110(4)
The Axioms of Set Theory
114(101)
Extensionality
114(5)
Set Terms; Comprehension; Separation
119(11)
The Set of All Urelements; the Empty Set
130(4)
Class Terms and Classes
134(11)
Axiom of Pairing
145(4)
Axiom of Union
149(7)
Axiom of Foundation
156(4)
Axiom of Collection
160(18)
Axiom of Power Set
178(4)
Pairing Functions and Products
182(11)
Relations and Functions
193(17)
Exercises
210(5)
The Axiom of Choice
215(17)
Introduction
215(3)
More Justification for AC; the ``Constructible'' Universe Viewpoint
218(11)
Exercises
229(3)
The Natural Numbers; Transitive Closure
232(52)
The Natural Numbers
232(21)
Algebra of Relations; Transitive Closure
253(19)
Algebra of Functions
272(4)
Equivalence Relations
276(5)
Exercises
281(3)
Order
284(146)
PO Classes, LO Classes, and WO Classes
284(9)
Induction and Inductive Definitions
293(23)
Comparing Orders
316(7)
Ordinals
323(17)
The Transfinite Sequence of Ordinals
340(18)
The von Neumann Universe
358(15)
A Pairing Function on the Ordinals
373(4)
Absoluteness
377(18)
The Constructible Universe
395(15)
Arithmetic on the Ordinals
410(16)
Exercises
426(4)
Cardinality
430(88)
Finite vs. Infinite
431(11)
Enumerable Sets
442(9)
Diagonalization; Uncountable Sets
451(6)
Cardinals
457(13)
Arithmetic on Cardinals
470(8)
Cofinality; More Cardinal Arithmetic; Inaccessible Cardinals
478(16)
Inductively Defined Sets Revisited; Relative Consistency of GCH
494(18)
Exercises
512(6)
Forcing
518(42)
PO Sets, Filters, and Generic Sets
520(4)
Constructing Generic Extensions
524(4)
Weak Forcing
528(4)
Strong Forcing
532(11)
Strong vs. Weak Forcing
543(1)
M[ G] Is a CTM of ZFC If M Is
544(5)
Applications
549(9)
Exercises
558(2)
Bibliography 560(3)
List of Symbols 563(4)
Index 567