Atnaujinkite slapukų nuostatas

El. knyga: Levick's Introduction to Cardiovascular Physiology

(Professor of Cardiovascular Physio), (Associate Professor & BHF Intermediate Fellow, University Oxford, Tutor & Fellow, Keble College and Lecturer Merton College, Consultant Cardiologist, Oxford University Hospital NHS Foundation Trust.)
  • Formatas: 448 pages
  • Išleidimo metai: 17-Apr-2018
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498739917
Kitos knygos pagal šią temą:
  • Formatas: 448 pages
  • Išleidimo metai: 17-Apr-2018
  • Leidėjas: CRC Press Inc
  • Kalba: eng
  • ISBN-13: 9781498739917
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A sound knowledge of cardiovascular physiology is fundamental to understanding cardiovascular disease, exercise performance and may other aspects of human physiology. Cardiovascular physiology is a major component of all undergraduate courses in physiology, biomedical science and medicine, and this popular introduction to the subject is intended primarily for these students. A key feature of this sixth edition is how state-of-the-art technology is applied to understanding cardiovascular function in health and disease. Thus the text is also well suited to graduate study programmes in medicine and physiological sciences.

Foreword xiii
Preface xv
A note on active and problem-based learning xvii
List of abbreviations
xix
1 Overview of the cardiovascular system
1(14)
1.1 Diffusion: its virtues and limitations
1(2)
1.2 Functions of the cardiovascular system
3(1)
1.3 The circulation of blood
3(3)
1.4 Cardiac output and its distribution
6(1)
1.5 Introducing `hydraulics': flow, pressure and resistance
7(2)
1.6 Blood vessel structure
9(1)
1.7 Functional classes of vessel
10(2)
1.8 The plumbing of the circulation
12(1)
1.9 Control systems
13(2)
2 The cardiac cycle
15(14)
2.1 The gross structure of the heart
15(2)
2.2 The ventricular cycle
17(3)
2.3 The atrial cycle and jugular venous pressure waves
20(1)
2.4 Altered phase durations when heart rate increases
21(1)
2.5 Heart sounds and valve abnormalities
21(2)
2.6 Clinical assessment of the cardiac cycle
23(6)
3 The cardiac myocyte: excitation and contraction
29(20)
3.1 The importance of calcium
29(1)
3.2 Ultrastructure of a cardiac myocyte
30(2)
3.3 Mechanism of contraction
32(1)
3.4 Resting membrane potential
33(4)
3.5 Role of pumps and exchangers
37(1)
3.6 Cardiac action potentials
37(3)
3.7 Advanced aspects: structure-function relations of ion channels
40(3)
3.8 Physiological and pathological changes in action potential
43(1)
3.9 Excitation-contraction coupling and the calcium cycle
44(3)
3.10 Regulation of contractile force
47(1)
3.11 Store overload, afterdepolarization and arrhythmia
47(2)
4 Initiation and nervous control of heartbeat
49(18)
4.1 Organization of the pacemaker-conduction system
49(2)
4.2 Electrical activity of the pacemaker
51(3)
4.3 Transmission of excitation
54(1)
4.4 Regulation of heart rate
55(3)
4.5 Effects of sympathetic stimulation
58(2)
4.6 Effects of parasympathetic stimulation
60(1)
4.7 Local neuromodulators and autonomic co-transmitters
61(1)
4.8 Dangers of an altered ionic environment
62(1)
4.9 Pharmacological manipulation of cardiac currents
63(1)
4.10 Mechano-electrical feedback
63(4)
5 Electrocardiography and arrhythmias
67(20)
5.1 Principles of electrocardiography
67(1)
5.2 Relation of ECG waves to cardiac action potentials
68(2)
5.3 Standard ECG leads
70(2)
5.4 The cardiac dipole
72(1)
5.5 The excitation sequence
72(1)
5.6 Why the QRS complex is complex
73(1)
5.7 The electrical axis of the heart
74(1)
5.8 The inverse problem of electrocardiography and ECG imaging (ECG)
75(1)
5.9 ECG in ischaemic heart disease
75(1)
5.10 Arrhythmogenic mechanisms: a trigger, vulnerable window and substrate
76(2)
5.11 Arrhythmias
78(9)
6 Control of stroke volume and cardiac output
87(26)
6.1 Overview
87(1)
6.2 Contractile properties of isolated myocardium
88(1)
6.3 Mechanisms underlying the length-tension relation
89(2)
6.4 The Frank-Starling mechanism
91(3)
6.5 Stroke work and the pressure-volume loop
94(1)
6.6 Central venous pressure and cardiac filling
95(2)
6.7 Operation of the Frank-Starling mechanism in humans
97(1)
6.8 Laplace's law and dilated hearts
98(1)
6.9 Multiple effects of arterial pressure on the heart
99(2)
6.10 Sympathetic regulation of contractility
101(3)
6.11 Other positive inotropic influences
104(1)
6.12 Negative inotropism, ischaemia and arrhythmia
105(2)
6.13 Co-ordinated control of cardiac output
107(2)
6.14 Cardiac energetics and metabolism
109(4)
7 Assessment of cardiac output and arterial pulse
113(8)
7.1 Fick's principle and pulmonary oxygen transport
113(2)
7.2 Indicator and thermal dilution methods
115(1)
7.3 Aortic flow by pulsed Doppler method
116(1)
7.4 Central arterial pulse and its relation to cardiac output
117(1)
7.5 Radionuclide ventriculography, 2-D echocardiography, cardiac magnetic resonance imaging and other methods
118(3)
8 Haemodynamics: flow, pressure and resistance
121(28)
8.1 Hydraulic principles: the laws of Darcy and Bernoulli
121(2)
8.2 Patterns of blood flow: laminar, turbulent, single-file
123(2)
8.3 Measurement of blood flow
125(1)
8.4 The arterial pressure pulse
126(5)
8.5 Mean arterial pressure and pressure measurement
131(4)
8.6 Pulsatile flow
135(1)
8.7 Peripheral resistance, Poiseuille's law and Laplace's wall mechanics
135(4)
8.8 Viscous properties of blood
139(2)
8.9 Pressure-flow relationships and autoregulation
141(1)
8.10 Venous pressure and volume
141(2)
8.11 Effects of gravity on the venous system
143(2)
8.12 Venous blood flow and the accessory pumps
145(4)
9 Endothelium
149(22)
9.1 Outline of endothelial functions
149(2)
9.2 Structure of endothelium
151(4)
9.3 Ion channels, calcium and endothelial function
155(1)
9.4 Nitric oxide production by endothelial cells
156(3)
9.5 Other vasoactive endothelial products: endothelium-derived hyperpolarization, prostacyclin and endothelins
159(1)
9.6 Actions of endothelium on blood
160(1)
9.7 Endothelial permeability and its regulation
161(1)
9.8 Endothelium and the inflammatory response
161(2)
9.9 Endothelium and angiogenesis
163(1)
9.10 Endothelium and atheroma
164(1)
9.11 Endothelium, platelets and coagulation
165(6)
10 The microcirculation and solute exchange
171(20)
10.1 Organization and perfusion of exchange vessels
171(2)
10.2 Three types of capillary
173(1)
10.3 Diffusion, convection and reflection across a porous membrane
174(3)
10.4 The concept of `permeability'
177(1)
10.5 Lipid-soluble molecules diffuse extremely rapidly across the endothelium
177(1)
10.6 Small lipid-insoluble molecules permeate the small pore system
178(2)
10.7 Large lipid-insoluble molecules pass through a large pore system
180(1)
10.8 The blood-brain barrier and carrier-mediated transport
181(1)
10.9 Extraction and clearance in capillaries
182(2)
10.10 How blood flow affects solute transfer
184(1)
10.11 Physiological regulation of solute transfer
185(6)
11 Circulation of fluid between plasma, interstitium and lymph
191(30)
11.1 The Starling principle of fluid exchange
191(3)
11.2 Capillary blood pressure (Pc) and its regulation
194(2)
11.3 Osmosis across capillaries: plasma colloid osmotic pressure (πp)
196(2)
11.4 Magnitude and dynamics of extravascular COP (πi, πg)
198(1)
11.5 Interstitial matrix and interstitial fluid pressure (Pi)
199(1)
11.6 Tissue fluid balance: filtration versus absorption
200(4)
11.7 Interstitial compliance and conductivity: effect of oedema
204(1)
11.8 Lymph and the lymphatic system
205(5)
11.9 Challenges to tissue fluid balance: orthostasis and exercise
210(1)
11.10 Oedema
211(2)
11.11 The swelling of inflammation
213(8)
12 Vascular smooth muscle: excitation, contraction and relaxation
221(18)
12.1 Overview
221(2)
12.2 Structure of a vascular myocyte
223(1)
12.3 Contractile properties and role of Ca2+
224(2)
12.4 Vascular ion channels
226(5)
12.5 From sympathetic stimulation to contractile response
231(4)
12.6 Vasomotion (rhythmic contractions)
235(1)
12.7 Physiological vasodilator mechanisms
235(4)
13 Control of blood vessels: intrinsic control
239(16)
13.1 Overview of vascular control and its roles
239(2)
13.2 Myogenic response to blood pressure changes
241(1)
13.3 Regulation by endothelium
242(2)
13.4 Regulation by metabolic vasoactive factors
244(2)
13.5 Regulation by autacoids
246(1)
13.6 Autoregulation of blood flow
247(2)
13.7 Metabolic (functional) hyperaemia
249(3)
13.8 Post-ischaemic (reactive) hyperaemia
252(1)
13.9 Ischaemia-reperfusion injury
252(3)
14 Control of blood vessels: extrinsic control by nerves and hormones
255(20)
14.1 Sympathetic vasoconstrictor nerves
255(6)
14.2 Parasympathetic vasodilator nerves
261(1)
14.3 Sympathetic vasodilator nerves
262(1)
14.4 Nociceptive C-fibre-mediated vasodilatation
263(2)
14.5 Hormonal control of the circulation
265(1)
14.6 Adrenaline and noradrenaline
265(1)
14.7 Vasopressin (antidiuretic hormone)
266(2)
14.8 Renin-angiotensin-aldosterone system
268(1)
14.9 Natriuretic peptides
269(1)
14.10 Special features of venous control
270(5)
15 Specialization in individual circulations
275(28)
15.1 Coronary circulation
275(7)
15.2 Skeletal muscle circulation
282(3)
15.3 Cutaneous circulation
285(5)
15.4 Cerebral circulation
290(5)
15.5 Pulmonary circulation
295(8)
16 Cardiovascular receptors, reflexes and central control
303(22)
16.1 Arterial baroreceptors
304(2)
16.2 The baroreflex
306(3)
16.3 Receptors in the heart and pulmonary arteries
309(2)
16.4 Reflexes from cardiac receptors in humans
311(1)
16.5 Long-term regulation of arterial blood pressure: the kidney link
312(2)
16.6 Excitatory inputs: muscle work receptors, arterial chemoreceptors, lung stretch receptors
314(3)
16.7 Central pathways: role of the medulla oblongata
317(2)
16.8 Central pathways: role of higher regions
319(1)
16.9 Overview of central control
320(5)
17 Co-ordinated cardiovascular responses
325(18)
17.1 Posture (orthostasis)
326(1)
17.2 The Valsalva manoeuvre
327(1)
17.3 Exercise
328(5)
17.4 Physical training and performance
333(2)
17.5 Feeding, digestion and the splanchnic circulation
335(1)
17.6 The diving response
335(1)
17.7 Ageing
336(2)
17.8 Sleep and the alerting response
338(5)
18 Cardiovascular responses in pathological situations
343(26)
18.1 Systemic hypoxaemia
343(3)
18.2 Shock and haemorrhage
346(3)
18.3 Transient loss of consciousness (syncope)
349(1)
18.4 Hypertension
350(6)
18.5 Chronic heart failure
356(13)
19 Experimental models and measurements to study cardiovascular physiology
369(16)
19.1 The experimental approach
369(1)
19.2 Isolated cells
370(1)
19.3 Measurements in isolated cells
371(3)
19.4 Multicellular preparations
374(2)
19.5 Measurements in multicellular preparations
376(3)
19.6 Animal studies in vivo
379(1)
19.7 Measurements in animal studies in vivo
379(2)
19.8 Computer modelling
381(4)
20 Experimental perturbations to investigate cardiovascular physiology
385(12)
20.1 Physical manipulation
385(2)
20.2 Chemical manipulation
387(2)
20.3 Genetic manipulation
389(4)
20.4 Human clinical studies
393(4)
Clinical cases for problem-based learning 397(10)
Appendix 1 Human cardiovascular parameters 407(4)
Index 411
Neil Herring completed his PhD and medical degree both from the University of Oxford. He is an Associate Professor at the University of Oxford, Consultant Cardiologist at the John Radcliffe Hospital, and Tutor and Fellow of Keble College, Oxford. He has published over 60 peer reviewed original research articles and reviews, and is co-author of the textbooks "Basic Science for Core Medical Training" (highly commended at the BMA Book Awards 2016) and "Levick's Introduction to Cardiovascular Physiology".



David J. Paterson is Professor of Physiology and Head of the Department of Physiology, Anatomy & Genetics at the University of Oxford, and a Fellow of Merton College, Oxford. He graduated from the Universities of Otago (NZ), Western Australia and Oxford, gaining his D.Phil from Oxford and D.Sc from the University of Western Australia. He is a group leader in the British Heart Foundation Centre of Research Excellence at Oxford, and is Honorary Director of the Burdon Sanderson Cardiac Science Centre in his Department. As a cardiac neurobiologist, his research focuses on the neural control of the cardiovascular system in normal and diseased states. In 2014 he was made an Honorary Fellow of The Royal Society of New Zealand, and in 2018 was awarded the Carl Ludwig Distinguished Lectureship from the American Physiological Society. He was recently Editor-in-Chief of The Journal of Physiology, and is a Fellow of The Physiological Society, Royal Society of Medicine, and Royal Society of Biology.