Atnaujinkite slapukų nuostatas

Lie Groups: Structure, Actions, and Representations: In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday 2013 ed. [Kietas viršelis]

Edited by , Edited by , Edited by
  • Formatas: Hardback, 413 pages, aukštis x plotis: 235x155 mm, weight: 7627 g, XIV, 413 p., 1 Hardback
  • Serija: Progress in Mathematics 306
  • Išleidimo metai: 03-Aug-2013
  • Leidėjas: Birkhauser Boston Inc
  • ISBN-10: 1461471923
  • ISBN-13: 9781461471929
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 413 pages, aukštis x plotis: 235x155 mm, weight: 7627 g, XIV, 413 p., 1 Hardback
  • Serija: Progress in Mathematics 306
  • Išleidimo metai: 03-Aug-2013
  • Leidėjas: Birkhauser Boston Inc
  • ISBN-10: 1461471923
  • ISBN-13: 9781461471929
Kitos knygos pagal šią temą:
Lie Groups: Structures, Actions, and Representations, In Honor of Joseph A. Wolf on the Occasion of his 75th Birthday consists of invited expository and research articles on new developments arising from Wolf's profound contributions to mathematics. Due to Professor Wolfs broad interests, outstanding mathematicians and scholars in a wide spectrum of mathematical fields contributed to the volume.  Algebraic, geometric, and analytic methods are employed. More precisely, finite groups and classical finite dimensional, as well as infinite-dimensional Lie groups, and algebras play a role. Actions on classical symmetric spaces, and on abstract homogeneous and representation spaces are discussed. Contributions in the area of representation theory involve numerous viewpoints, including that of algebraic groups and various analytic aspects of harmonic analysis.

 

Contributors

 

D. Akhiezer                         T. Oshima

A. Andrada                         I. Pacharoni

M. L. Barberis                    F. Ricci

L. Barchini                            S. Rosenberg

I. Dotti                                  N. Shimeno

M. Eastwood                     J.Tirao

V. Fischer                            S. Treneer

T. Kobayashi                       C.T.C. Wall

A. Korįnyi                           D. Wallace

B. Kostant                           K. Wiboonton

P. Kostelec                          F. Xu

K.-H. Neeb                          O. Yakimova

G. Olafsson                         R. Zierau

B. Ųrsted
Preface ix
Real Group Orbits on Flag Manifolds
1(24)
Dmitri Akhiezer
1 Introduction
1(2)
2 Finiteness Theorem
3(2)
3 Embedding a Subgroup into a Parabolic One
5(1)
4 Factorizations of Reductive Groups
6(3)
5 Real Forms of Inner Type
9(5)
6 Matsuki Correspondence
14(1)
7 Cycle Spaces
15(2)
8 Complex Geometric Properties of the Crown
17(2)
9 The Schubert Domain
19(2)
10 Complex Geometric Properties of Flag Domains
21(4)
References
23(2)
Complex Connections with Trivial Holonomy
25(16)
Adrian Andrada
Maria Laura Barberis
Isabel Dotti
1 Introduction
25(2)
2 Preliminaries
27(2)
3 Complex Connections with Trivial Holonomy
29(4)
4 Complete Complex Connections with Parallel Torsion and Trivial Holonomy
33(8)
References
38(3)
Indefinite Harmonic Theory and Harmonic Spinors
41(18)
Leticia Barchini
Roger Zierau
1 Introduction
41(2)
2 Comments on Indefinite Harmonic Theory
43(4)
3 Harmonic Spinors
47(2)
4 The L2-Theory
49(10)
References
56(3)
Twistor Theory and the Harmonic Hull
59(22)
Michael Eastwood
Feng Xu
1 Introduction
59(3)
2 Harmonic Hull in Dimension 2
62(1)
3 Harmonic Hull in Dimension 4
62(8)
4 Generalities on Double Fibrations
70(3)
5 Harmonic Hull in Higher Even Dimensions
73(4)
6 Harmonic Hull in Odd Dimensions
77(4)
References
79(2)
Nilpotent Gelfand Pairs and Spherical Transforms of Schwartz Functions II: Taylor Expansions on Singular Sets
81(32)
Veronique Fischer
Fulvio Ricci
Oksana Yakimova
1 Outline and Formulation of the Problem
82(5)
2 Proof of Theorem 1.1 for N Abelian
87(2)
3 N Nonabelian: Structure of K-Invariant Polynomials
89(5)
4 Fourier Analysis of K-Equivariant Functions on N
94(11)
5 Proof of Proposition 4.3
105(6)
6 Conclusion
111(2)
References
112(1)
Propagation of Multiplicity-Freeness Property for Holomorphic Vector Bundles
113(28)
Toshiyuki Kobayashi
1 Introduction
114(1)
2 Complex Geometry and Multiplicity-Free Theorem
115(3)
3 Proof of Theorem 2.2
118(6)
4 Visible Actions on Complex Manifolds
124(4)
5 Multiplicity-Free Theorem for Associated Bundles
128(5)
6 Proof of Proposition 5.2
133(2)
7 Concluding Remarks
135(6)
References
138(3)
Poisson Transforms for Line Bundles from the Shilov Boundary to Bounded Symmetric Domains
141(22)
Adam Koranyi
1 Introduction
141(1)
2 General Poisson Transforms
142(2)
3 Preliminaries on Symmetric Domains
144(6)
4 Poisson Transforms Between Line Bundles over S and D
150(1)
5 Trivializations and Explicit Poisson Kernels
151(3)
6 The Casimir Operator
154(5)
7 Remarks on Hua-Type Equations
159(4)
References
162(1)
Center U(n), Cascade of Orthogonal Roots, and a Construction of Lipsman-Wolf
163(12)
Bertram Kostant
1 Introduction
164(1)
2 Lipsman-Wolf Construction
164(11)
References
173(2)
Weak Harmonic Maaß Forms and the Principal Series for SL(2, R)
175(10)
Peter Kostelec
Stephanie Treneer
Dorothy Wallace
1 Introduction
176(1)
2 Preliminaries
176(2)
3 Some Examples of Functions Constructed from the Raising and Lowering Operators
178(1)
4 Constructing Weak Harmonic Maaβ Forms from the Principal Series
179(2)
5 En, Fn and Gn
181(2)
6 Concluding Remarks
183(2)
References
184(1)
Holomorphic Realization of Unitary Representations of Banach-Lie Groups
185(40)
Karl-Hermann Neeb
1 Introduction
186(3)
2 Holomorphic Banach Bundles
189(6)
3 Hilbert Spaces of Holomorphic Sections
195(12)
4 Realizing Positive Energy Representations
207(18)
A Equicontinuous Representations
215(6)
References
221(4)
The Segal-Bargmann Transform on Compact Symmetric Spaces and Their Direct Limits
225(30)
Gestur Olafsson
Keng Wiboonton
1 Introduction
226(2)
2 Basic Notations
228(1)
3 L2 Fourier Analysis
229(5)
4 The Fock Space H1(MC)
234(8)
5 Segal-Bargmann Transforms on L2(M) and L2(M)K
242(2)
6 Propagations of Compact Symmetric Spaces
244(3)
7 The Segal-Bargman Transform on the Direct Limit of {L2(Mn)}n
247(2)
8 The Segal-Bargman Transform on the Direct Limit of {L2(Mn)Kn}n
249(6)
References
251(4)
Analysis on Flag Manifolds and Sobolev Inequalities
255(18)
Bent Ørsted
1 Introduction
255(1)
2 Geometry of the Rank-1 Principal Series
256(5)
3 Logarithmic Sobolev Inequalities for Rank-1 Groups
261(2)
4 Inequalities in the Noncompact Picture
263(10)
References
270(3)
Boundary Value Problems on Riemannian Symmetric Spaces of the Noncompact Type
273(36)
Toshio Oshima
Nobukazu Shimeno
1 Introduction
273(3)
2 Representations on Symmetric Spaces
276(11)
3 Construction of the Hua Type Operators
287(7)
4 Examples
294(15)
References
306(3)
One-Step Spherical Functions of the Pair (SU(n+1), U(n))
309(46)
Ines Pacharoni
Juan Tirao
1 Spherical Functions
310(4)
2 The Differential Operators D and E
314(14)
3 Hypergeometrization
328(5)
4 The Eigenvalues of D and E
333(3)
5 The One-Step Spherical Functions
336(9)
6 Matrix Orthogonal Polynomials
345(10)
References
353(2)
Chern-Weil Theory for Certain Infinite-Dimensional Lie Groups
355(26)
Steven Rosenberg
1 Introduction
355(3)
2 General Comments on Chern-Weil Theory
358(3)
3 Mapping Spaces and Their Characteristic Classes
361(7)
4 Secondary Classes on Ψ*0-Bundles
368(3)
5 Characteristic Classes for Diffeomorphism Groups
371(2)
6 Characteristic Classes and the Families Index Theorem
373(8)
References
379(2)
On the Structure of Finite Groups with Periodic Cohomology
381
C.T.C. Wall
1 Introduction
382(2)
2 Notation and Preliminaries
384(3)
3 Structure of P'-Groups
387(2)
4 Presentations of P-Groups
389(3)
5 Subgroups and Refinement of Type Classification
392(5)
6 Free Orthogonal Actions
397(4)
7 The Finiteness Obstruction
401(6)
8 Application to the Space-Form Problem
407(2)
9 Space-Forms: Classification
409
References
411