"Written by top experts in the field, this book is a modern and comprehensive approach to the Lie Symmetry groups, guiding the reader along the tortuous path through the theory of fractional differential operators".
Carlo Cattani, University of Tuscia
"This book is the first to apply Lie symmetry analysis to fractional differential equations. Read this book and learn from one of the best."
Elyas Shivanian, Imam Khomeini International University "Lie symmetry analysis (or the Lie Method) has been extensively used for decades in the pursuit of finding exact solutions to partial differential equations. Yet, the Lie symmetry classification continues to receive a lot of attention in the field. Although not thoroughly pursued until more recently, fractional calculus may prove useful in the study of fractional differential equations. In this text, authors Hashemi (Univ. of Bonab, Iran) and Baleanu (Institute of Space Sciences, Romania) ask if there can be "conservation laws for fractional differential equations associated to real-world models?" They approach this question by analyzing fractional Lie symmetries, both classical and nonclassical, bringing the analysis to fractional partial differential equations and related self-adjointness and conservation laws. After a brief introduction to Lie symmetry analysis as applied to the integer-ordered Fornberg-Whitham and Black-Scholes equations, the authors investigate numerous fractional differential equations including the diffusion, Burger's, Airy's, and the gas dynamic equations. Once these are analyzed using nonclassical Lie symmetry analysis, the remainder of the text focuses on conservation laws and self-adjointness of fractional differential equations. [ . . .] the volume of information provided in its scant 200 pages will certainly be useful to those interested in Lie symmetry analysis." Choice Review
"Written by top experts in the field, this book is a modern and comprehensive approach to the Lie Symmetry groups, guiding the reader along the tortuous path through the theory of fractional differential operators". Carlo Cattani, University of Tuscia
"This book is the first to apply Lie symmetry analysis to fractional differential equations. Read this book and learn from one of the best." Elyas Shivanian, Imam Khomeini International University