Atnaujinkite slapukų nuostatas

El. knyga: Lifetime of Excursions Through Random Walks and Levy Processes: A Volume in Honour of Ron Doney's 80th Birthday

  • Formatas: EPUB+DRM
  • Serija: Progress in Probability 78
  • Išleidimo metai: 01-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030833091
  • Formatas: EPUB+DRM
  • Serija: Progress in Probability 78
  • Išleidimo metai: 01-Jan-2022
  • Leidėjas: Springer Nature Switzerland AG
  • Kalba: eng
  • ISBN-13: 9783030833091

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This collection honours Ron Doneys work and includes invited articles by his collaborators and friends. After an introduction reviewing Ron Doneys mathematical achievements and how they have influenced the field, the contributed papers cover both discrete-time processes, including random walks and variants thereof, and continuous-time processes, including Levy processes and diffusions. A good number of the articles are focused on classical fluctuation theory and its ramifications, the area for which Ron Doney is best known.
- A Lifetime of Excursions Through Random Walks and Lévy Processes.
- Path Decompositions of Perturbed Reflecting Brownian Motions. - On Doneys
Striking Factorization of the Arc-Sine Law. - On a Two-Parameter Yule-Simon
Distribution. - The Limit Distribution of a Singular Sequence of Itō
Integrals. - On Multivariate Quasi-infinitely Divisible Distributions.
- Extremes and Regular Variation. - Some New Classes and Techniques in the
Theory of Bernstein Functions. - A Transformation for Spectrally Negative
Lévy Processes and Applications. - First-Passage Times for Random Walks in
the Triangular Array Setting. - On Local Times of Ornstein-Uhlenbeck
Processes. - Two Continua of Embedded Regenerative Sets. - No-Tie Conditions
for Large Values of Extremal Processes. - Slowly Varying Asymptotics for
Signed Stochastic Difference Equations. - The DoobMcKean Identity for Stable
Lévy Processes. - Oscillatory Attraction and Repulsion from a Subset of the
Unit Sphere or Hyperplane for Isotropic Stable Lévy Processes. - Angular
Asymptotics for Random Walks. - First Passage Times of Subordinators and Urns.
Loļc Chaumont was educated at Université du Maine (Le Mans) and Université Paris 6 and is currently a professor of mathematics at Université d'Angers. He published over 50 research papers on theory of stochastic processes, both in discrete and continuous times. His main domain of research concerns Lévy processes. He was the director of LAREMA, the CNRS mathematics research unit in Angers, from 2012 to 2016.





Andreas E. Kyprianou was educated at the University of Oxford and University of Sheffield and is currently a professor of mathematics at the University of Bath. He has spent over 25 years working on the theory and application of path-discontinuous stochastic processes and has over 130 publications, including two graduate textbooks on Lévy processes. During his time in Bath he co-founded and directed the Prob-L@B (Probability Laboratory at Bath), was PI for a multi-million pound EPSRC Centre for Doctoral Training and is currently the Director of the Bath Institute for Mathematical Innovation.