Atnaujinkite slapukų nuostatas

El. knyga: Linear Algebra

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This textbook invites readers to dive into the mathematical ideas of linear algebra. Offering a gradual yet rigorous introduction, the author illuminates the structure, order, symmetry, and beauty of the topic. Opportunities to explore, master, and extend the theory abound, with generous exercise sets embodying the Hungarian tradition of active problem-solving. Determinants, matrices, and systems of linear equations begin the book. This unique ordering offers insights from determinants early on, while also admitting re-ordering if desired. Chapters on vector spaces, linear maps, and eigenvalues and eigenvectors follow. Bilinear functions and Euclidean spaces build on the foundations laid in the first half of the book to round out the core material. Applications in combinatorics include Hilbert's third problem, Oddtown and Eventown problems, and Sidon sets, a favorite of Paul Erdos. Coding theory applications include error-correction, linear, Hamming, and BCH codes. An appendix covers the algebraic basics used in the text. Ideal for students majoring in mathematics and computer science, this textbook promotes a deep and versatile understanding of linear algebra. Familiarity with mathematical proof is assumed, though no prior knowledge of linear algebra is needed. Supplementary electronic materials support teaching and learning, with selected answers, hints, and solutions, and an additional problem bank for instructors.
Determinants
Matrices
Systems of linear equations
Vector spaces
Linear maps
Eigenvalue, minimal polynomial
Bilinear functions
Euclidean spaces
Combinatorial applications
Codes
Basic algebra
Index
Robert Freud, University Eotvos Lorand, Budapest, Hungary