Atnaujinkite slapukų nuostatas

El. knyga: Linknot: Knot Theory By Computer

(Univ Of Pennsylvania, Usa), (Serbian Academy Of Sciences & Arts, Serbia)
  • Formatas: 500 pages
  • Serija: Series on Knots & Everything 21
  • Išleidimo metai: 16-Nov-2007
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814474030
Kitos knygos pagal šią temą:
  • Formatas: 500 pages
  • Serija: Series on Knots & Everything 21
  • Išleidimo metai: 16-Nov-2007
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814474030
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

LinKnot Knot Theory by Computer provides a unique view of selected topics in knot theory suitable for students, research mathematicians, and readers with backgrounds in other exact sciences, including chemistry, molecular biology and physics.The book covers basic notions in knot theory, as well as new methods for handling open problems such as unknotting number, braid family representatives, invertibility, amphicheirality, undetectability, non-algebraic tangles, polyhedral links, and (2,2)-moves.Hands-on computations using Mathematica or the webMathematica package LinKnot and beautiful illustrations facilitate better learning and understanding. LinKnot is also a powerful research tool for experimental mathematics implementation of Caudron's ideas. The use of Conway notation enables experimenting with large families of knots and links.Conjectures discussed in the book are explained at length. The beauty, universality and diversity of knot theory is illuminated through various non-standard applications: mirror curves, fullerens, self-referential systems, and KL automata.
Basic Graph Theory; Shadows of KLs; Notation of Knots and Links (KLs);
Gauss and Dowker Code; KL Diagrams; Reidemeister Moves; Conway Notation;
Classification of KLs; Chirality of KLs; Unlinking Number and Unlinking Gap;
KLs with Unlinking Number One; Non-Invertible KLs; Braids; Braid Family
Representatives; Borromean Links; Recognition and Generation of KLs;
Polynomial Invariants; Experimenting with KLs; Derivation and Classification
of KLs; Basic Polyhedra, Polyhedral KLs, and Non-Algebraic Tangles;
Non-Alternating and Almost Alternating KLs; Families of Undetectable KLs;
Detecting Chirality of KLs by Polynomial Invariants; History of Knot Theory
and Its Applications; Mirror Curves; KLs and Fullerenes; KLs and Mathematical
Logic; Self-Referential Systems; KL Automata.