Atnaujinkite slapukų nuostatas

El. knyga: Local Limit Theorems for Inhomogeneous Markov Chains

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2331
  • Išleidimo metai: 31-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031326011
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2331
  • Išleidimo metai: 31-Jul-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031326011

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book extends the local central limit theorem to Markov chains whose state spaces and transition probabilities are allowed to change in time. Such chains are used to model Markovian systems depending on external time-dependent parameters. The book develops a new general theory of local limit theorems for additive functionals of Markov chains, in the regimes of local, moderate, and large deviations, and provides nearly optimal conditions for the classical expansions, as well as asymptotic corrections when these conditions fail. Applications include local limit theorems for independent but not identically distributed random variables, Markov chains in random environments, and time-dependent perturbations of homogeneous Markov chains.

The inclusion of appendices with background material, numerous examples, and an account of the historical background of the subject make this self-contained book accessible to graduate students. It will also be useful for researchers in probability and ergodic theory who are interested in asymptotic behaviors, Markov chains in random environments, random dynamical systems and non-stationary systems.
Additive functionals on Markov arrays.- Variance growth, center tightness, and the central limit theorem.- The essential range and irreducibility.- The local limit theorem in the irreducible case.- The local limit theorem in the reducible case.- Local limit theorems for large and moderate deviations.- Miscellaneous examples and special cases.- Local limit theorems for Markov chains in random environment.
Dmitry Dolgopyat is a Distiguished Professor at the University of Maryland, and a member of the advisory board of the Brin Mathematics Research Center. He obtained his doctorate from Princeton University, and has held positions at the University of California at Berkeley, and at the Pennsylvania State University. Omri Sarig is the Theodore R. and Edlyn Racoosin Professor of Mathematics at the Weizmann Institute of Science. He obtained his doctorate from Tel-Aviv University, and has held positions at the University of Warwick  and the Pennsylvania State University.  







Dmitry Dolgopyat and Omri Sarig work at the intersection of ergodic theory, probability theory, and the theory of dynamical systems. They have an ongoing collaboration aimed at studying probabilistic limit theorems  for dynamical systems.