Atnaujinkite slapukų nuostatas

El. knyga: Locally Conformal Kahler Geometry

  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 155
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461220268
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Progress in Mathematics 155
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781461220268
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

. E C, 0 < 1="">'1 < 1,="" and="" n="" e="" z,="" n="" ~="" 2.="" let~.="">. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf.

Daugiau informacijos

Springer Book Archives
1 L.c.K. Manifolds.- 2 Principally Important Properties.- 2.1 Vaismans
conjectures.- 2.2 Reducible manifolds.- 2.3 Curvature properties.- 2.4
Blow-up.- 2.5 An adapted cohomology.- 3 Examples.- 3.1 Hopf manifolds.- 3.2
The Inoue surfaces.- 3.3 A generalization of Thurstons manifold.- 3.4 A
four-dimensional solvmanifold.- 3.5 SU(2) x S1.- 3.6 Noncompact examples.-
3.7 Brieskorn & Van de Vens manifolds.- 4 Generalized Hopf manifolds.- 5
Distributions on a g.H. manifold.- 6 Structure theorems.- 6.1 Regular Vaisman
manifolds.- 6.2 L.c.K.0 manifolds.- 6.3 A spectral characterization.- 6.4
k-Vaisman manifolds.- 7 Harmonic and holomorphic forms.- 7.1 Harmonic forms.-
7.2 Holomorphic vector fields.- 8 Hermitian surfaces.- 9 Holomorphic maps.-
9.1 General properties.- 9.2 Pseudoharmonic maps.- 9.3 A Schwarz lemma.- 10
L.c.K. submersions.- 10.1 Submersions from CH?n.- 10.2 L.c.K. submersions.-
10.3 Compact total space.- 10.4 Total space a g.H. manifold.- 11 L.c.
hyperKähler manifolds.- 12 Submanifolds.- 12.1 Fundamental tensors.- 12.2
Complex and CR submanifolds.- 12.3 Anti-invariant submanifolds.- 12.4
Examples.- 12.5 Distributions on submanifolds.- 12.6 Totally umbilical
submanifolds.- 13 Extrinsic spheres.- 13.1 Curvature-invariant submanifolds.-
13.2 Extrinsic and standard spheres.- 13.3 Complete intersections.- 13.4
Yanos integral formula.- 14 Real hypersurfaces.- 14.1 Principal curvatures.-
14.2 Quasi-Einstein hypersurfaces.- 14.3 Homogeneous hypersurfaces.- 14.4
Type numbers.- 14.5 L. c. cosymplectic metrics.- 15 Complex submanifolds.-
15.1 Quasi-Einstein submanifolds.- 15.2 The normal bundle.- 15.3 L.c.K. and
Kähler submanifolds.- 15.4 A Frankel type theorem.- 15.5 Planar geodesic
immersions.- 16 Integral formulae.- 16.1 Hopf fibrations.- 16.2 The
horizontallifting technique.- 16.3 The main result.- 17 Miscellanea.- 17.1
Parallel IInd fundamental form.- 17.2 Stability.- 17.3 f-Structures.- 17.4
Parallel f-structure P.- 17.5 Sectional curvature.- 17.6 L. c. cosymplectic
structures.- 17.7 Chens class.- 17.8 Geodesic symmetries.- 17.9 Submersed CR
submanifolds.- A Boothby-Wang fibrations.- B Riemannian submersions.