Atnaujinkite slapukų nuostatas

Logical Number Theory I: An Introduction Softcover reprint of the original 1st ed. 1991 [Minkštas viršelis]

  • Formatas: Paperback / softback, 405 pages, aukštis x plotis: 242x170 mm, weight: 715 g, 2 Illustrations, black and white; X, 405 p. 2 illus., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 25-Apr-1991
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540522360
  • ISBN-13: 9783540522362
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 405 pages, aukštis x plotis: 242x170 mm, weight: 715 g, 2 Illustrations, black and white; X, 405 p. 2 illus., 1 Paperback / softback
  • Serija: Universitext
  • Išleidimo metai: 25-Apr-1991
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540522360
  • ISBN-13: 9783540522362
Kitos knygos pagal šią temą:
Number theory as studied by the logician is the subject matter of the book. This first volume can stand on its own as a somewhat unorthodox introduction to mathematical logic for undergraduates, dealing with the usual introductory material: recursion theory, first-order logic, completeness, incompleteness, and undecidability. In addition, its second chapter contains the most complete logical discussion of Diophantine Decision Problems available anywhere, taking the reader right up to the frontiers of research (yet remaining accessible to the undergraduate). The first and third chapters also offer greater depth and breadth in logico-arithmetical matters than can be found in existing logic texts. Each chapter contains numerous exercises, historical and other comments aimed at developing the student's perspective on the subject, and a partially annotated bibliography.

Daugiau informacijos

Springer Book Archives
I. Arithmetic Encoding.-
1. Polynomials.-
2. Sums of Powers.-
3. The
Cantor Pairing function.-
4. The Fueter-Pólya Theorem, I.- *5. The
Fueter-Pólya Theorem, II.-
6. The Chinese Remainder Theorem.-
7. The
?-Function and Other Encoding Schemes.-
8. Primitive Recursion.- *9.
Ackermann Functions.-
10. Arithmetic Relations.-
11. Computability.-
12.
Elementary Recursion Theory.-
13. The Arithmetic Hierarchy.-
14. Reading
List.- II. Diophantine Encoding.-
1. Diophantine Equations; Some Background.-
2. Initial Results; The Davis-Putnam-Robinson Theorem.-
3. The Pell Equation,
I.-
4. The Pell Equation, II.-
5. The Diophantine Nature of R.E. Relations.-
6. Applications.-
7. Forms.- *8. Binomial Coėfficients.- *9. A Direct Proof
of the Davis-Putnam-Robinson Theorem.- *10. The 3-Variable Exponential
Diophantine Result.-
11. Reading List.- III. Weak Formal Theories of
Arithmetic.-
1. Ignorabimus?.-
2. Formal Language and Logic.-
3. The
Completeness Theorem.-
4. Presburger-Skolem Arithmetic; The Theory of
Addition.- *5. Skolem Arithmetic; The Theory of Multiplication.-
6. Theories
with + and ?; Incompleteness and Undecidability.-
7. Semi-Repiesentability of
Functions.-
8. Further Undecidability Results.-
9. Reading List.- Index of
Names.- Index of Subjects.