Atnaujinkite slapukų nuostatas

El. knyga: Long Afterglow Phosphorescent Materials

  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Materials
  • Išleidimo metai: 27-Aug-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319604213
  • Formatas: EPUB+DRM
  • Serija: SpringerBriefs in Materials
  • Išleidimo metai: 27-Aug-2017
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319604213

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book presents the fundamental scientific principles of long afterglow phosphorescent materials and a comprehensive review of both commercialized afterglow materials and the latest advances in the development of novel long afterglow materials. It is designed to supply much needed information about inorganic and organic afterglow materials, including detailed treatment of structure, classification, preparation techniques, characterization, surface modification chemistry, and optical measurements. Special attention is given to technological applications such as photovoltaics, photocatalytic reactions, and lighting and molecular sensing.

Although traditional long afterglow phosphors have been widely investigated and used in industry, and significant efforts have recently been made toward the use of these materials for bioimaging, there is to date no scientific monograph dedicated to afterglow materials. This book not only provides a beginners’ guide to the fundamentals of afterglow luminescence and materials, but also gives skilled researchers essential updates on emerging trends and efforts. The work provides a special focus on organic afterglow materials, which offer several advantages such as light-weight, flexible, and wide varieties; mild preparation conditions; and good processability. This book is aimed at postgraduate students, researchers, and technologists who are engaged in the synthesis, development, and commercialization of afterglow materials. It represents essential reading on interdisciplinary frontiers in the materials science, chemistry, photophysics, and biological aspects of afterglow materials.
1 Fundamentals of Luminescent Materials
1(20)
1.1 Fundamentals of Luminescence
1(6)
1.1.1 Absorption
2(1)
1.1.2 Emission
2(4)
1.1.3 Afterglow
6(1)
1.2 Inorganic Afterglow Phosphors
7(14)
1.2.1 Band Structure of Inorganic Host
7(2)
1.2.2 Energy Levels of Isolated Ions in Solids
9(3)
1.2.3 Luminescent Centers
12(4)
1.2.4 Influence of Defects and Impurities
16(2)
References
18(3)
2 Inorganic Long Persistent Phosphor
21(66)
2.1 Introduction
21(1)
2.2 Classification of Inorganic Long Persistent Phosphors
22(30)
2.2.1 Lanthanide-Activated Phosphor
22(20)
2.2.2 Transition Metal-Activated Persistent Phosphor
42(9)
2.2.3 Summary
51(1)
2.3 Synthetic Strategies
52(8)
2.3.1 High-Temperature Solid-State Reaction
52(1)
2.3.2 Sol-Gel Processing
53(2)
2.3.3 Combustion Technique
55(1)
2.3.4 Hydrothermal Treatment
56(2)
2.3.5 Other Emerging Methods
58(2)
2.3.6 Summary
60(1)
2.4 Optical Properties
60(2)
2.5 Commercially Available Long Persistent Phosphor
62(2)
2.6 Factors Affecting Afterglow Properties
64(6)
2.6.1 Emitting ion
64(1)
2.6.2 Host
65(2)
2.6.3 Codopant
67(2)
2.6.4 Fluxing Agent
69(1)
2.6.5 Preparation Condition
70(1)
2.7 Surface Modification
70(17)
2.7.1 Inorganic Coating
71(1)
2.7.2 Small Molecule Modification
72(2)
2.7.3 Polymer Modification
74(3)
References
77(10)
3 Material Characterizations
87(14)
3.1 Optical Properties
87(8)
3.1.1 Excitation and Emission
87(1)
3.1.2 Reflection and Absorption
88(2)
3.1.3 Thermoluminescence
90(3)
3.1.4 Luminescence Decay
93(2)
3.2 Structural Characteristics
95(6)
3.2.1 Size and Morphology
95(2)
3.2.2 Crystal Structure
97(2)
References
99(2)
4 Applications of Inorganic Afterglow Phosphors
101(16)
4.1 Display and Lighting
102(4)
4.1.1 Fire Safety Signs
103(1)
4.1.2 Road Traffic Signs
104(1)
4.1.3 Luminous Watch
104(1)
4.1.4 Luminous Fibers
105(1)
4.2 Biological Applications
106(11)
4.2.1 In Vivo Imaging
106(5)
4.2.2 Molecular Sensing
111(2)
4.2.3 Lateral Flow Assay
113(1)
References
114(3)
5 Organic Afterglow Phosphors
117(36)
5.1 Principle of Organic Luminescence
118(6)
5.1.1 Fluorescence
118(1)
5.1.2 Phosphorescence
119(1)
5.1.3 Thermally Activated Delayed Fluorescence (TADF)
120(1)
5.1.4 Hybridized Local and Charge Transfer
121(1)
5.1.5 Triplet-Triplet Annihilation and Singlet Fission
121(1)
5.1.6 Organic Ultra-long Room-Temperature Phosphorescence (OURTP)
122(2)
5.2 Materials for Organic Afterglow
124(10)
5.2.1 Single-Component Small Molecules
125(3)
5.2.2 Multicomponent Materials
128(1)
5.2.3 Polymers
129(3)
5.2.4 Carbon Dots
132(1)
5.2.5 Metal-Organic Frameworks (MOFs)
132(2)
5.2.6 Complexes
134(1)
5.3 Applications of Organic Afterglow Phosphors
134(10)
5.3.1 Afterglow OLEDs
135(1)
5.3.2 Anti-counterfeiting
136(3)
5.3.3 Optical Recording
139(2)
5.3.4 Sensors
141(2)
5.3.5 Bioimaging
143(1)
5.4 Concluding Remarks
144(9)
References
148(5)
Index 153