Atnaujinkite slapukų nuostatas

El. knyga: Long-Life Design and Test Technology of Typical Aircraft Structures

  • Formatas: EPUB+DRM
  • Išleidimo metai: 21-May-2018
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811083990
  • Formatas: EPUB+DRM
  • Išleidimo metai: 21-May-2018
  • Leidėjas: Springer Verlag, Singapore
  • Kalba: eng
  • ISBN-13: 9789811083990

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book addresses anti-fatigue manufacturing, analysis and test verification technologies for typical aircraft structures, including fastening holes, shot peening plates, different types of joints and wing boxes. Offering concrete solutions to practical problems in aircraft engineering, it will benefit researchers and engineers in the fields of Aerospace Technology and Astronautics.

1 Introduction
1(4)
References
3(2)
2 Outline of Fatigue and Fracture Mechanics
5(18)
2.1 Basic Conception of Fatigue
5(6)
2.1.1 Definition of Fatigue and Its Damage Property
5(1)
2.1.2 Alternating Stress
6(1)
2.1.3 Curve S-N
7(1)
2.1.4 Equal-Life Curve
8(1)
2.1.5 Stress Fatigue and Strain Fatigue
9(1)
2.1.6 Linear Cumulative Damage Theory
10(1)
2.2 The Main Factors that Affect the Structural Fatigue Performance
11(2)
2.2.1 Effects of Load Spectrum
11(1)
2.2.2 Effects of Stress Concentration
11(1)
2.2.3 Effects of Size
11(1)
2.2.4 Effects of Surface Roughness and Residual Stress
12(1)
2.3 Mechanism of Fatigue Failure, Crack Propagation, and Fracture Analysis of Metals
13(3)
2.3.1 Mechanism of Fatigue Failure
13(1)
2.3.2 Fatigue Crack Propagating Theory
14(1)
2.3.3 Fractographic Analysis
15(1)
2.4 Estimate Methods of Fatigue Life
16(7)
2.4.1 Nominal Stress Approach
16(1)
2.4.2 Local Stress-Strain Method
17(1)
2.4.3 Multiaxial Fatigue Theory
18(3)
References
21(2)
3 Effect of Surface Quality of Open Holes on Fatigue Life
23(32)
3.1 Effect of the Surface Defects on Fatigue Life of Open Holes
23(14)
3.1.1 Scratch
24(6)
3.1.2 Cavity
30(3)
3.1.3 Inclusion
33(4)
3.2 Effect of Manufacturing Quality on Fatigue Performance of Open Holes
37(13)
3.2.1 Surface Roughness
38(3)
3.2.2 Verticality
41(3)
3.2.3 Cylindricity
44(3)
3.2.4 Roundness
47(2)
3.2.5 Manufacturing Quality of Fasten Holes and Empirical Equation
49(1)
3.3 Effect of Drilling on Fatigue Performance of Open Holes
50(5)
3.3.1 Specimen Size and Loading
51(1)
3.3.2 Fatigue Test Results
51(2)
References
53(2)
4 Anti-fatigue Strengthening Technology of Holes
55(30)
4.1 Effect of Cold Expansion on Fatigue Performance of Open Holes
55(11)
4.1.1 Direct Mandrel Expansion Process and Its Parameters
56(2)
4.1.2 Residual Stress Measurements
58(4)
4.1.3 Fatigue Test Results and Fracture Analysis
62(2)
4.1.4 FEM Analysis
64(2)
4.2 Effect of Impression on Fatigue Performance of Open Holes
66(10)
4.2.1 Impression Process
66(1)
4.2.2 Influence of Indenter Size on Residual Stress Distribution
67(3)
4.2.3 Influence of Different Factors on Residual Stress of Impression-Reinforced Holes
70(4)
4.2.4 Fatigue Test of Three-Hole Sample Impressed
74(2)
4.3 Effect of Hammering on Fatigue Performance of Open Hole
76(9)
4.3.1 Hammering and Fatigue Testing
76(2)
4.3.2 Finite Element Analysis of Hammering
78(4)
4.3.3 Fracture Analysis
82(1)
References
83(2)
5 Shot Peening Strengthening Technology
85(28)
5.1 Mechanism of Shot Peening and Status of Art
85(2)
5.2 Effect of Shot Materials on Fatigue Performance
87(8)
5.2.1 Fatigue Test
87(1)
5.2.2 Comparative Analysis of Fatigue Test Data
87(3)
5.2.3 Fatigue Fracture Analysis
90(2)
5.2.4 Numerical Simulation of Shot Peening with Different Shot Materials
92(3)
5.3 Effect of Surface Roughness on Residual Stress Field of Shot Peening
95(7)
5.3.1 Finite Element Model
95(2)
5.3.2 Residual Stress Distribution
97(1)
5.3.3 Effect of Surface Roughness on Residual Stress of Shot Peening
98(1)
5.3.4 Influence of Shot Size on Residual Stress Considering Surface Roughness
99(2)
5.3.5 The Effect of Shot Peening Velocity on Residual Stress Considering Surface Roughness
101(1)
5.4 Effect of Mechanical Properties of Target Materials on Shot Peening Energy Conversion
102(11)
5.4.1 Conversion Between Kinetic Energy and Deformation Energy
102(2)
5.4.2 Finite Element Model
104(1)
5.4.3 Model Verification
105(1)
5.4.4 Effect of Young's Modulus of Target
106(2)
5.4.5 Effect of Target Yield Strength
108(1)
5.4.6 Effect of Strain Hardening Rate
108(3)
References
111(2)
6 Anti-fatigue Design and Analysis of Joints
113(30)
6.1 Single Shear Lap Joints
113(10)
6.1.1 Fatigue Test
113(8)
6.1.2 Analysis of Hole Stress
121(2)
6.2 Double Shear and Interference Fit Joints
123(8)
6.2.1 Effect of Interference on Pin Load
123(4)
6.2.2 Fatigue Test and Analysis
127(4)
6.3 Reverse Double Dogbone Joints
131(7)
6.3.1 Nail Load Test
132(3)
6.3.2 Fatigue Test
135(1)
6.3.3 Maximum Principal Stress Analysis
136(2)
6.4 Application of Multi-axis Fatigue Theory on Fatigue Life Prediction of Joints
138(5)
6.4.1 Life Prediction of Aluminum Alloy Reverse Double Dogbone Joints Specimen
138(1)
6.4.2 Estimation of Life of Single Shear Lap Joints
139(1)
References
140(3)
7 Fatigue Test and Analysis of Box Section
143
7.1 Box Section Fatigue Test
143(3)
7.1.1 Specimen
143(2)
7.1.2 Loading Method and Test Results
145(1)
7.2 Box Section Life Evaluation
146
7.2.1 Box Section Model and Results
147(1)
7.2.2 Shape and Size of Initial Defects
148(1)
7.2.3 Fatigue Crack Propagation Analysis Program
149(3)
7.2.4 Evaluation Results
152(1)
References
153
Liu Jun holds a doctor degree from Department of Engineering Mechanics, Northwestern Polytechnical University, China.  He is now an associate professor at School of Mechanics and Civil Engineering & Architecture, NWPU. 

Zhufeng Yue is a professor at School of Mechanics and Civil Engineering & Architecture, NWPU.  He was a Humboldt Scholar at Ruhr University Bochum in 1999 and Cheung Kung Scholar at NWPU in 2001. 

Xiaoliang Geng is an associate professor at School of Mechanics and Civil Engineering & Architecture, NWPU. 

Shifeng Wen is an associate professor at School of Mechanics and Civil Engineering & Architecture, NWPU.        

Wuzhu Yan is a lecturer at School of Mechanics and Civil Engineering & Architecture, NWPU.