Atnaujinkite slapukų nuostatas

El. knyga: Low-Code AI

4.33/5 (12 ratings by Goodreads)
  • Formatas: 328 pages
  • Išleidimo metai: 13-Sep-2023
  • Leidėjas: O'Reilly Media
  • Kalba: eng
  • ISBN-13: 9781098146795
Kitos knygos pagal šią temą:
  • Formatas: 328 pages
  • Išleidimo metai: 13-Sep-2023
  • Leidėjas: O'Reilly Media
  • Kalba: eng
  • ISBN-13: 9781098146795
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Take a data-first and use-case driven approach to understanding machine learning and deep learning concepts with Low-Code AI. This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems.

Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data, feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.

You'll learn how to:

  • Distinguish structured and unstructured data and understand the different challenges they present
  • Visualize and analyze data
  • Preprocess data for input into a machine learning model
  • Differentiate between the regression and classification supervised learning models
  • Compare different machine learning model types and architectures, from no code to low-code to custom training
  • Design, implement, and tune ML models
  • Export data to a GitHub repository for data management and governance