Atnaujinkite slapukų nuostatas

El. knyga: Low Dielectric Constant Materials for IC Applications

Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Low dielectric constant materials are an important component of microelectronic devices. This comprehensive book covers the latest low-dielectric-constant (low-k) materials technology, thin film materials characterization, integration and reliability for back-end interconnects and packaging applications in microelectronics. Highly informative contributions from leading academic and industrial laboratories provide comprehensive information about materials technologies for < 0.18 um process technology. Topics include: Organic dielectric materials, Inorganic dielectric materials, Composite dielectric materials, Metrology and characterization techniques, Integration, Reliability. This volume will be an invaluable resource for professionals, scientists, researchers and graduate students involved in dielectric technology development, materials science, polymer science, and semiconductor devices and processing.

Low dielectric materials are an important component of microelectronic devices. In this carefully edited volume the leading researchers give an introduction to and a survey of the various fields of dielectrics for IC integration. The book appeals to materials reserachers, electrical engineers and advanced students.

Recenzijos

From the reviews:



Praise for P.S. Ho, J. Leu, and W.W. Lee, Ed's, Low Dielectric Constant Materials for IC Applications



Electrical Insulation Magazine



"Because this volume contains an excellent overview of the current research and issues with low-k dielectric materials for IC applications along with comprehensive practical information, researches, material scientists, and polymer engineers working in the area of microelectronics will find this book a very valuable addition to their library."



"This text addresses the latest advances in low-k materials, thin film characterization, integration into copper interconnection processing, and reliability for microelectronics applications. Because this volume contains an excellent overview of the current research and issues with low-k dielectric materials for IC applications along with comprehensive practical information, researchers, material scientists, and polymer engineers working in the area of microelectronics will find this book a very valuable addition to their library." (IEEE Electrical Insulation Magazine, Vol. 20 (2), March/April, 2004)



"This book addresses issues on the development, characterization and integration of low dielectric constant (k) materials for advanced on-chip interconnects. this book illustrates in a comprehensive way the technological challenges brought by the introduction of low-k materials into semiconductor manufacturing. Being intended to researchers and engineers active in the field of semiconductor processing, it can be used as an introductory book . Highly appreciated." (Jean - Francois de Marneffe, Physicalia, Vol. 25 (4), 2003)

Daugiau informacijos

Springer Book Archives
Overview on Low Dielectric Constant Materials for IC Applications
1(22)
P.S. Ho
J. Leu
W.W. Lee
Introduction
1(3)
Dielectric Constant and Bonding Characteristics
4(4)
Material Properties and Integration Requirements
8(3)
Characterization of Low-k Dielectrics
11(3)
Porous Low-k Materials
14(4)
Conclusion
18(5)
References
19(4)
Materials Issues and Characterization of Low-k Dielectric Materials
23(52)
E.T. Ryan
A.J. McKerrow
J. Leu
P.S. Ho
Introduction
23(3)
Thin-Film Material Characterization
26(11)
General Structure-Property Relationships
37(11)
Dielectric Constant
37(6)
Thermal Properties
43(3)
Moisture Uptake
46(1)
Thermomechanical and Thermal Stress Properties
46(2)
Fluorinated Polyimide: Effect of Chemical-Structure Modifications on Film Properties
48(3)
Crosslinked and Thermosetting Materials
51(5)
Parylene Polymers: Effect of Thermal History on Film Properties
56(8)
Future Challenges
64(11)
References
68(7)
Structure and Property Characterization of Low-k Dielectric Porous Thin Films Determined by X-Ray Reflectivity and Small-Angle Neutron Scattering
75(20)
E.K. Lin
H. Lee
B.J. Bauer
H. Wang
J.T. Wetzel
W. Wu
Introduction
75(1)
Two-Phase Methodology
76(7)
Experimental
77(2)
Two-Phase Analysis Using the Debye Model
79(1)
Results and Discussion
80(3)
Three-Phase Methodology
83(3)
Films with Ordered Porous Structure
86(1)
Limits of SANS Characterization Methods
87(1)
Future Developments
88(4)
Contrast Variation SXR
88(1)
Inhomogeneous Wall Composition
89(3)
Conclusion
92(3)
References
92(3)
Vapor Deposition of Low-k Polymeric Dielectrics
95(26)
W.N. Gill
S. Rogojevic
T. Lu
Introduction
95(2)
Vapor-Phase Deposition and Polymerization on Substrates
97(1)
Parylenes
98(13)
Synthesis Review
99(1)
Properties of Parylene-N
100(1)
Mechanisms and Models of Parylene Polymerization
101(5)
Integration Issues with Parylene-N
106(1)
Synthesis and Properties of Parylene-F
107(3)
Integration Issues with Parylene-F
110(1)
Polynaphthalene and Its Derivatives
111(3)
Experimental System for Polynaphthalene Synthesis
111(2)
Properties of Polynaphthalene and Fluorinated Polynaphthalene
113(1)
Teflon and Its Derivatives
114(2)
Synthesis of Teflon-AF
114(1)
Properties of Teflon-AF
115(1)
Integration Issues with Teflon
115(1)
Vapor-Deposited Polyimides
116(1)
Prospects for Vapor-Depositable Low-k Polymers
117(4)
References
117(4)
Plasma-Enhanced Chemical Vapor Deposition of FSG and a-C:F Low-k Materials
121(46)
K. Endo
K. Kishimoto
Y. Matsubara
K. Koyanagi
Introduction
121(1)
FSG Films
122(22)
Introduction
122(1)
General Characteristics
122(6)
HDP-CVD FSG Film
128(16)
a-C:F Films
144(23)
Introduction
144(1)
Deposition of a-C:F by PE-CVD and Controlling Fluorine Concentration
145(1)
Control of F/C Ratio by Helicon-Wave HDP-CVD
146(5)
Mechanism of the Reduction of the Dielectric Constant of a-C:F
151(5)
Signal-Delay Measurements of CMOS Circuits
156(6)
Conclusion
162(1)
References
163(4)
Porous Organosilicates for On-Chip Applications: Dielectric Generational Extendibility by the Introduction of Porosity
167(36)
W. Volksen
C.J. Hawker
J.L. Hedrick
V. Lee
T. Magbitang
M. Toney
R.D. Miller
E. Huang
J. Liu
K.G. Lynn
M. Petkov
K. Rodbell
M.H. Weber
Introduction
167(4)
Porous Silica
171(2)
Organosilicates
173(2)
Porogens
175(5)
Porous Organosilicate Matrix Resins
180(3)
Formation of Nanohybrids
183(3)
Porous Organosilicates
186(1)
Characterization of Porous Organosilicates
187(9)
Conclusion
196(7)
References
198(5)
Metal/Polymer Interfacial Interactions
203(18)
D.M. Martini
J.A. Kelber
Introduction
203(1)
Experimental Methods
204(5)
XPS and AES Analysis
205(1)
XPS for Nucleation Modes
206(1)
Other Surface-Science Techniques
207(1)
Metal-Deposition Techniques
207(2)
Metallization of Fluoropolymers
209(7)
Metal Evaporation
209(1)
Sputter Deposition
210(1)
Aluminum MOCVD
210(3)
Copper MOCVD
213(3)
Polymers on Metals: Adhesion to Cu
216(2)
Introduction to SiC films
216(1)
Vinyl Silane-Derived Films on Cu
217(1)
Conclusion
218(3)
References
219(2)
Diffusion of Metals in Polymers and During Metal/Polymer Interface Formation
221(32)
F. Faupel
A. Thran
M. Kiene
T. Strunskus
V. Zaporojtchenko
K. Behnke
Introduction
221(2)
Thermodynamic Considerations
223(4)
Effect of Metal-Polymer Interaction on the Mobility of Metal Atoms
227(2)
Surface Diffusion, Nucleation, and Growth of Metal Films
229(6)
Diffusion and Aggregation
235(6)
Atomic Diffusion
241(6)
Conclusion
247(6)
References
248(5)
Plasma Etching of Low Dielectric Constant Materials
253(24)
G.S. Oehrlein
T.E.F.M. Standaert
P.J. Matsuo
Introduction
253(2)
Technological Requirements and Patterning Approaches
255(5)
Damascene Processing
255(2)
Plasma Etching
257(1)
Important Low Dielectric Constant Materials
258(2)
Fluorocarbon-Based Etching Processes
260(5)
Fluorine-Doped SiO2 (SiOF), Hydrogen Silsequioxane (HSQ) and Methyl Silsequioxane (MSQ)
260(3)
Porous Silica Films
263(2)
Directional Etching of Organic Low-k Materials
265(6)
Hydrocarbon-Based Organic Materials: Etching of Olyarylene Ether (PAE-2) in Ar/O2/N2 Gas Mixtures
268(1)
Fluorocarbon-Based Organic Materials: Polytetrafluoroethylene
269(2)
Hybrid Materials
271(1)
Postetch Mask-Stripping and Via-Cleaning Processes
271(3)
Conclusion
274(3)
References
275(2)
Integration of SiLK Semiconductor Dielectric
277(28)
J.J. Waeterloos
Introduction
277(1)
SiLK Semiconductor Dielectric
278(1)
Subtractive Technologies
279(11)
Introduction
279(2)
Integration Flow for Subtractive Interconnects
281(1)
Integration Unit Steps
282(6)
Electrical Results
288(1)
Conclusion
288(2)
Damascene Technologies
290(11)
Introduction
290(1)
Embedded-Hardmask Approach for Dual Damascene
290(7)
Dual Damascene Schemes with Multilayered Hardmasks
297(4)
Cost-of-Ownership
301(1)
Conclusion
302(3)
References
303(2)
Index 305