Atnaujinkite slapukų nuostatas

El. knyga: Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings

Edited by , Edited by , Edited by , Edited by

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the proceedings of the 11th International Workshop on Machine Learning in Medical Imaging, MLMI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020. The conference was held virtually due to the COVID-19 pandemic.





The 68 papers presented in this volume were carefully reviewed and selected from 101 submissions. They focus on major trends and challenges in the above-mentioned area, aiming to identify new-cutting-edge techniques and their uses in medical imaging. Topics dealt with are: deep learning, generative adversarial learning, ensemble learning, sparse learning, multi-task learning, multi-view learning, manifold learning, and reinforcement learning, with their applications to medical image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc.
Temporal-Adaptive Graph Convolutional Network for Automated
Identification of Major Depressive Disorder with Resting-State fMRI.- Error
Attention Interactive Segmentation of Medical Images through Matting and
Fusion.- A Novel fMRI Representation Learning Framework with GAN.-
Semi-supervised Segmentation with Self-Training Based on Quality Estimation
and Refinement.- 3D Segmentation Networks for Excessive Numbers of Classes:
Distinct Bone Segmentation in Upper Bodies.- Super Resolution of Arterial
Spin Labeling MR Imaging Using Unsupervised Multi-Scale Generative
Adversarial Network.- Self-Recursive Contextual Network for Unsupervised 3D
Medical Image Registration.- Automated Tumor Proportion Scoring for
Assessment of PD-L1 Expression Based on Multi-Stage Ensemble Strategy.-
Uncertainty Quantification in Medical Image Segmentation with Normalizing
Flows.- Out-of-Distribution Detection for Skin Lesion Images with Deep
Isolation Forest.- A 3D+2D CNN Approach Incorporating BoundaryLoss for Stroke
Lesion Segmentation.- Linking Adolescent Brain MRI to Obesity via Deep
Multi-cue Regression Network.- Robust Multiple Sclerosis Lesion Inpainting
with Edge Prior.- Segmentation to Label: Automatic Coronary Artery Labeling
from Mask Parcellation.- GSR-Net: Graph Super-Resolution Network for
Predicting High-Resolution from Low-Resolution Functional Brain Connectomes.-
Anatomy-Aware Cardiac Motion Estimation.- Division and Fusion: Rethink
Convolutional Kernels for 3D Medical Image Segmentation.- LDGAN:
Longitudinal-Diagnostic Generative Adversarial Network for Disease
Progression Prediction with Missing Structural MRI.- Unsupervised MRI
Homogenization: Application to Pediatric Anterior Visual Pathway
Segmentation.- Boundary-aware Network for Kidney Tumor Segmentation.- O-Net:
An Overall Convolutional Network for Segmentation Tasks.- Label-Driven Brain
Deformable Registration Using Structural Similarity and Nonoverlap
Constraints.- EczemaNet: Automating Detection and Severity Assessment of
Atopic Dermatitis.- Deep Distance Map Regression Network with Shape-aware
Loss for Imbalanced Medical Image Segmentation.- Joint Appearance-Feature
Domain Adaptation: Application to QSM Segmentation Transfer.- Exploring
Functional Difference between Gyri and Sulci via Region-Specific 1D
Convolutional Neural Networks.- Detection of Ischemic Infarct Core in
Non-Contrast Computed Tomography.- Bayesian Neural Networks for Uncertainty
Estimation of Imaging Biomarkers.- Extended Capture Range of Rigid 2D/3D
Registration by Estimating Riemannian Pose Gradients.- Structural
Connectivity Enriched Functional Brain Network using Simplex Regression with
GraphNet.- Constructing High-Order Dynamic Functional Connectivity Networks
from Resting-State fMRI for Brain Dementia Identification.- Multi-tasking
Siamese Networks for Breast Mass Detection using Dual-view Mammogram
Matching.- 3D Volume Reconstruction from Single Lateral X-ray Image via
Cross-Modal Discrete Embedding Transition.- Cleft Volume Estimation and
Maxilla Completion Using Cascaded Deep Neural Networks.- A Deep Network for
Joint Registration and Reconstruction of Images with Pathologies.- Learning
Conditional Deformable Shape Templates for Brain Anatomy     .-
Demographic-Guided Attention in Recurrent Neural Networks for Modeling
Neuropathophysiological Heterogeneity.- Unsupervised Learning for Spherical
Surface Registration.- Anatomy-guided Convolutional Neural Network for Motion
Correction in Fetal Brain MRI.- Gyral Growth Patterns of Macaque Brains
Revealed by Scattered Orthogonal Nonnegative Matrix Factorization.-
Inhomogeneity Correction in Magnetic Resonance Images Using Deep Image
Priors.- Hierarchical and Robust Pathology Image Reading for High-Throughput
Cervical Abnormality Screening .- Importance Driven Continual Learning for
Segmentation Across Domains.- RDCNet: Instance segmentation with a minimalist
recurrent residual network.- Automatic Segmentation of Achilles Tendon
Tissues using Deep Convolutional Neural Network.- An End to End System for
Measuring Axon Growth.- Interwound Structural and Functional Difference
Between Preterm and Term Infant Brains Revealed by Multi-view CCA.- Graph
Convolutional Network Based Point Cloud for Head and Neck Vessel
Labeling               .- Unsupervised Learning-based Nonrigid Registration
of High Resolution Histology Images.- Additive Angular Margin for Few Shot
Learning to Classify Clinical Endoscopy Images.- Extracting and Leveraging
Nodule Features with Lung Inpainting for Local Feature Augmentation.-
Gambling Adversarial Nets for Hard Sample Mining and Structured Prediction:
Application in Ultrasound Thyroid Nodule Segmentation.- Mammographic Image
Conversion between Source and Target Acquisition Systems using CGAN.- An
End-to-End learnable Flow Regularized Model for Brain Tumor Segmentation.-
Neural Architecture Search for Microscopy CellSegmentation.- Classification
of Ulcerative Colitis Severity in Colonoscopy Videos Using Vascular Pattern
Detection.- Predicting Catheter Ablation Outcomes from Heart Rhythm
Time-series: Less Is More.- AdaBoosted Deep Ensembles: Getting Maximum
Performance Out of Small Training Datasets.- Cross-Task Representation
Learning for Anatomical Landmark Detection.- Cycle Ynet: Semi-supervised
Tracking of 3D Anatomical Landmarks.- Learning Hierarchical Semantic
Correspondence and Gland Instance Segmentation.- Open-Set Recognition for
Skin Lesions using Dermoscopic Images.- End-to-End Coordinate Regression
Model with Attention-Guided Mechanism for Landmark Localization in 3D Medical
Images.- Enhanced MRI Reconstruction Network using Neural Architecture
Search.- Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets.- Noise-aware Standard-dose PET Reconstruction
Using General and Adaptive Robust Loss.- Semi-supervised Transfer Learning
for Infant Cerebellum Tissue Segmentation .- Informative Feature-guided
Siamese Network for Early Diagnosis of ASD.