Atnaujinkite slapukų nuostatas

El. knyga: Machine Models of Music

Edited by (Rice University), Edited by
  • Formatas: 556 pages
  • Serija: Machine Models of Music
  • Išleidimo metai: 08-Jan-1993
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262290982
Kitos knygos pagal šią temą:
Machine Models of Music
  • Formatas: 556 pages
  • Serija: Machine Models of Music
  • Išleidimo metai: 08-Jan-1993
  • Leidėjas: MIT Press
  • Kalba: eng
  • ISBN-13: 9780262290982
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music, and to demonstrate the ways in which music can push the boundaries of traditional AI research.
Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Frederick Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Stephen Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, Christopher Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).

Machine Models of Music brings together representative models and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Barry Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Steven Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, C. Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).Stephan Schwanauer is President of Mediasoft Corporation. David Levitt is the founder of HIP Software and head of audio products at VPL Research.



Machine Models of Music brings together representative models and current research toillustrate the rich impact that artificial intelligence has had on the understanding and compositionof traditional music and to demonstrate the ways in which music can push the boundaries oftraditional Al research.