Atnaujinkite slapukų nuostatas

Macroalgal Biorefineries For The Blue Economy [Kietas viršelis]

(Tel Aviv Univ, Israel & Massachusetts General Hospital, Usa), (The Max Stern Yezreel Valley College, Israel & Univ Of Haifa, Israel), (Tel Aviv Univ, Israel), (Israel Oceanographic & ), (Tel Aviv Univ, Israel), (Tel Aviv Univ, Israel)
  • Formatas: Hardback, 304 pages
  • Išleidimo metai: 17-Nov-2020
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811224285
  • ISBN-13: 9789811224287
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 304 pages
  • Išleidimo metai: 17-Nov-2020
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811224285
  • ISBN-13: 9789811224287
Kitos knygos pagal šią temą:
"This unique compendium provides an insight into the role of emerging marine biorefineries based on macroalgae (seaweeds) in the development of a sustainable use of ocean resources for economic growth-blue economy. The useful reference text shows a complete picture on the motivation to develop seaweed technologies, and how the combination of biology, cultivation technologies and downstream processing with economics can address the social challenges through the blue growth"--
Preface v
About the Authors ix
Chapter 1 Why Go for Seagriculture? The Need for New Sources of Biomass for Bioeconomy and What the Seas Can Offer Humanity?
1(18)
1.1 The Use of Land to Feed the World Population
1(1)
1.2 Do We Have Enough Land?
2(3)
1.3 The Environmental Costs of Land Conversion
5(3)
1.4 Seagriculture as an Alternative
8(1)
1.5 Global-Scale Analysis of Seagriculture Potential
8(7)
1.6 What is the Environmental Cost of Using the Sea? Should We Start Talking About Sea Conversion?
15(4)
Chapter 2 Blue Economy and Marine Biorefinery
19(6)
Chapter 3 Marine Macroalgae
25(12)
3.1 Seaweed Species
25(1)
3.2 Spatial and Chemical Diversity
26(8)
3.3 Knowledge Gaps of the Seaweed LifeCycle for Their Use as Crops
34(3)
Chapter 4 What is a Macroalgae Biorefinery?
37(30)
4.1 Marine Biorefinery as a System
37(3)
4.2 General Thermodynamic Considerations in Marine Biorefinery Design
40(3)
4.3 Environmental Exergonomics for Marine Biorefineries
43(7)
4.3.1 Marine biorefinery system boundary
44(1)
4.3.2 Marine biorefinery system efficiency
45(2)
4.3.3 Calculation of exergy currents
47(1)
4.3.4 The emergence of Eco-exergy currents
48(2)
4.4 Determination of Optimum Scale and Serviced Area for Marine Biorefineries
50(2)
4.5 Practical Implications and Processes Selection
52(3)
4.6 Examples of Co-production
55(8)
4.7 Additional Considerations and Future Perspectives
63(4)
Chapter 5 Environmental Impacts of Seaweed Aquaculture
67(10)
5.1 Ecological Relevance of Seaweeds in the Marine Environment
68(1)
5.2 Invasive Species Through Seaweed Cultivation
68(1)
5.3 Potential Threats of Offshore Cultivation
69(4)
5.4 Advantages of Land-based Practices
73(1)
5.5 Spatial Management
74(1)
5.6 Environmental Benefits of Integrated Multi-Trophic Aquaculture (IMTA)
75(2)
Chapter 6 The Marine Biomass Feedstock
77(44)
6.1 Natural Stock Collection History
77(1)
6.2 From Domestic to Industrial Use
78(2)
6.3 Preventing Over-Harvesting
80(2)
6.4 Future Perspectives on Natural Stocks Collection
82(1)
6.5 Choice of the Cultivated Species
83(1)
6.6 Offshore Cultivation
84(9)
6.6.1 Developing offshore concepts
84(2)
6.6.2 Present near-shore cultivation
86(1)
6.6.3 Future offshore systems for biomass production
87(6)
6.7 Integrated Multi-Trophic Aquaculture
93(5)
6.7.1 The IMTA approach and systems
93(3)
6.7.2 Environmental and economic views on IMTA
96(1)
6.7.3 Gaps and challenges in seaweed IMTA
97(1)
6.7.4 IMTA examples globally
97(1)
6.8 Pest Management in Seagriculture
98(10)
6.9 Monitoring of the Cultivation Process
108(3)
6.10 Chemical Composition Characterization Methods
111(10)
Chapter 7 Downstream Processing
121(36)
7.1 Sample Handling, Post-harvest Treatment
121(1)
7.2 Abiotic Spoilage
122(1)
7.3 Biotic Spoilage
123(1)
7.4 Rinsing and Deashing
124(1)
7.5 Drying
124(5)
7.6 Storage
129(1)
7.7 Milling
130(2)
7.8 Bioprocessing of Seaweed Biomass: Some Classic and Emerging Technologies
132(25)
7.8.1 Hydrothermal treatments
132(3)
7.8.2 Fermentation for ethanol production
135(2)
7.8.3 Anaerobic digestion
137(2)
7.8.4 Green solvents for clean processing
139(3)
7.8.5 Emerging technologies
142(4)
7.8.6 Halobiorefinery: Concept, potentials, and benefits
146(11)
Chapter 8 Examples of Applications
157(40)
8.1 Seaweed Aquaculture
157(2)
8.2 Food
159(4)
8.3 Pharma/Medicine
163(4)
8.4 Chemical Industry
167(2)
8.5 Construction
169(2)
8.6 Agriculture
171(1)
8.7 Energy
172(5)
8.8 Bioremediation
177(12)
8.8.1 Eutrophication
178(1)
8.8.2 Eutrophication mitigation
179(1)
8.8.3 Macroalgae eutrophication bioremediation
180(1)
8.8.4 Integrated systems
181(1)
8.8.5 Industrial wastewater
182(1)
8.8.6 Biosorption mechanisms
183(1)
8.8.7 Live macroalgae bioremediation
184(2)
8.8.8 Non-living macroalgae bioremediation
186(1)
8.8.9 Biomass pre-treatment
186(1)
8.8.10 Macroalgae biomass derivatives
187(1)
8.8.11 Metals recovery
188(1)
8.9 CO2 Capture
189(3)
8.10 Geo and Climate Engineering
192(5)
8.10.1 Ecological engineering
193(1)
8.10.2 Ecosystem restoration
193(1)
8.10.3 Coastal protection
194(3)
Chapter 9 Economics of Macroalgae Biorefineries
197(18)
9.1 Feedstock Uncertainty
200(1)
9.2 Processing Technology Uncertainties
201(1)
9.3 Investments
202(1)
9.4 Price Uncertainties
202(2)
9.4 Demand
204(1)
9.5 Supply Chains
204(11)
Bibliography 215(64)
Index 279