Atnaujinkite slapukų nuostatas

Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation 2013 ed. [Kietas viršelis]

  • Formatas: Hardback, 204 pages, aukštis x plotis: 235x155 mm, weight: 480 g, X, 204 p., 1 Hardback
  • Išleidimo metai: 30-May-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642041981
  • ISBN-13: 9783642041983
  • Formatas: Hardback, 204 pages, aukštis x plotis: 235x155 mm, weight: 480 g, X, 204 p., 1 Hardback
  • Išleidimo metai: 30-May-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642041981
  • ISBN-13: 9783642041983
This is an overview of recent progress in magnetic particle imaging, which uses various static and oscillating magnetic fields and tracer materials made from iron oxide nanoparticles to perform background-free measurements of the particles’ local concentration.

This volume provides a comprehensive overview of recent developments in magnetic particle imaging (MPI), a novel imaging modality. Using various static and oscillating magnetic fields, and tracer materials made from iron oxide nanoparticles, MPI can perform background-free measurements of the particles’ local concentration. The method exploits the nonlinear remagnetization behavior of the particles and has the potential to surpass current methods for the detection of iron oxide in terms of sensitivity and spatiotemporal resolution. Starting from an introduction to the technology, the topics addressed include setting up an imaging device, assessment of image quality, development of new MPI tracer materials, and the first preclinical results. This is the first book to be published on magnetic particle imaging, and it will be an invaluable source of information for everyone with an interest in this exciting new modality.
1 Introduction
1(10)
1.1 MPI in the Context of Medical Imaging
1(2)
1.2 Historical Perspective
3(5)
1.3 Structure of the Book
8(3)
2 How Magnetic Particle Imaging Works
11(60)
2.1 Introduction
11(1)
2.2 Magnetic Particles
12(13)
2.2.1 Particle Concentration
12(2)
2.2.2 Particle Magnetization
14(4)
2.2.3 Derivative of the Magnetization Characteristic
18(2)
2.2.4 Mean Magnetic Moment
20(1)
2.2.5 Particle Size Distribution
21(1)
2.2.6 Relaxation Effects
22(3)
2.3 Signal Generation and Acquisition
25(11)
2.3.1 Signal Reception
25(3)
2.3.2 Direct Coupling of Excitation Field
28(1)
2.3.3 Signal Generation
29(3)
2.3.4 Signal Spectrum
32(3)
2.3.5 Excitation Frequency and Field Strength
35(1)
2.4 Spatial Encoding: Selection Field
36(4)
2.4.1 Particle Selection
36(2)
2.4.2 Sampling of Volumes
38(1)
2.4.3 Properties of the Selection Field
39(1)
2.5 Performance Upgrade: Drive Field
40(18)
2.5.1 Moving the Field-Free Point
40(1)
2.5.2 How to Move the Field-Free Point Nonmechanically
41(1)
2.5.3 Drive-Field Waveform
42(2)
2.5.4 Individual Signals
44(3)
2.5.5 Convolution with the FFP Kernel
47(2)
2.5.6 2D/3D Imaging
49(9)
2.6 Performance Upgrade: Focus Field
58(3)
2.6.1 Limitations of the Drive Field
59(1)
2.6.2 Scanning Large Volumes Using the Focus Field
59(2)
2.7 Limitations of MPI
61(10)
2.7.1 Spatial Resolution
61(7)
2.7.2 Sensitivity and Temporal Resolution
68(1)
2.7.3 Detection Limit
69(2)
3 How to Build an MPI Scanner
71(26)
3.1 Introduction
71(1)
3.2 Magnetic Field Generation
71(10)
3.2.1 Electromagnetic Coils
72(1)
3.2.2 Soft-Magnetic Iron Cores
72(1)
3.2.3 Permanent Magnets
73(1)
3.2.4 Skin Effect and Litz Wire
74(2)
3.2.5 Generating Homogeneous Magnetic Fields
76(2)
3.2.6 Generating Magnetic Gradient Fields
78(3)
3.3 Generic MPI Coil Configuration
81(5)
3.3.1 Generating the Selection and Focus Field
82(1)
3.3.2 Generating the Drive Field
83(1)
3.3.3 Receiving the Particle Magnetization
84(1)
3.3.4 Sharing Coils
85(1)
3.4 Generic MPI Signal Chain
86(11)
3.4.1 Signal Separation
87(2)
3.4.2 Overview of the 3D Signal Chain
89(1)
3.4.3 Impedance Matching
90(3)
3.4.4 Analog Filter
93(4)
4 Prior to Reconstruction - The System Function
97(30)
4.1 Introduction
97(1)
4.2 Signal Equation in Time Space
97(2)
4.3 Signal Equation in Frequency Space
99(2)
4.3.1 Transfer Function
99(1)
4.3.2 Energy of the System Function
100(1)
4.3.3 Spatial Structure of the System Function
100(1)
4.4 1D System Function
101(4)
4.4.1 Ideal Particles
102(1)
4.4.2 Langevin Particles
102(3)
4.5 2D System Function
105(8)
4.5.1 Spatial Structure of the 2D System Function
105(2)
4.5.2 Energy of the 2D System Function
107(1)
4.5.3 Nonlinear Frequency Mixing
108(3)
4.5.4 Similarity to Tensor Products of Chebyshev Polynomials
111(1)
4.5.5 Orthogonality
112(1)
4.6 3D System Function
113(1)
4.7 Discrete Signal Equation
113(5)
4.7.1 Sampling of Time
113(2)
4.7.2 Sampling of Space
115(1)
4.7.3 Discretization of the Signal Equation
116(2)
4.8 How to Determine the System Function
118(9)
4.8.1 Measurement-Based Approach
119(3)
4.8.2 Model-Based Approach
122(1)
4.8.3 Comparison of Measured and Modeled System Functions
123(4)
5 From Data to Images: Reconstruction
127(22)
5.1 Introduction
127(1)
5.2 Least-Squares Solution
128(3)
5.2.1 Statistical Motivation
129(1)
5.2.2 Weighted Least-Squares Solution
130(1)
5.3 Discrete Ill-Posed Problems
131(1)
5.4 Regularization Methods
132(7)
5.4.1 Singular Value Decomposition
133(2)
5.4.2 Choice of the Regularization Parameter
135(2)
5.4.3 Complexity Analysis
137(2)
5.4.4 Inverse Crime
139(1)
5.5 Choosing the Weighting Matrix
139(2)
5.5.1 Unit Weights
140(1)
5.5.2 Row Normalization Weights
140(1)
5.5.3 Removing Noisy Frequency Components
140(1)
5.6 Iterative Solvers
141(8)
5.6.1 Conjugate Gradient Normal Residual
142(2)
5.6.2 Kaczmarz Method
144(1)
5.6.3 Regularization by Stopping the Iteration Process
145(1)
5.6.4 Convergence Speed of Iterative Solvers
146(1)
5.6.5 Physical Constraints
147(2)
6 Special System Topologies
149(22)
6.1 Introduction
149(1)
6.2 Single-Sided Imaging
149(8)
6.2.1 Basic Principle
150(3)
6.2.2 Multidimensional Imaging
153(2)
6.2.3 Experiments
155(2)
6.3 Field-Free Line Imaging
157(12)
6.3.1 Static Field-Free Line Imaging
161(4)
6.3.2 Dynamic Field-Free Line Imaging
165(4)
6.4 MPI/MRI Hybrid Systems
169(2)
7 Putting MPI to Use: Applications
171(6)
7.1 Introduction
171(1)
7.2 Cardiovascular
171(3)
7.3 Oncology, Sentinel Lymph Node Imaging, and Hyperthermia
174(1)
7.4 Cell Labeling and Tracking
175(1)
7.4.1 Red Blood Cell Labeling
175(1)
7.4.2 Stem Cell Labeling
175(1)
7.5 Gastrointestinal and Lung Imaging
176(1)
A Fundamentals of Electromagnetism
177(14)
A.1 Introduction
177(1)
A.2 Maxwell's Equations
177(5)
A.2.1 Constitutive Relations
179(1)
A.2.2 Bound Currents
180(1)
A.2.3 Quasi-static Approximation
181(1)
A.2.4 Time-Independent Current Distribution
182(1)
A.3 Magnetic Fields
182(4)
A.3.1 Magnetic Vector Potential
183(2)
A.3.2 Biot-Savart Law
185(1)
A.3.3 Coil Sensitivity
185(1)
A.4 Electromagnetic Induction
186(5)
A.4.1 Single-Wire Coil
187(1)
A.4.2 Volume Coil
188(1)
A.4.3 Law of Reciprocity
188(1)
A.4.4 Coil Coupling
189(2)
References 191(8)
Index 199