Atnaujinkite slapukų nuostatas

El. knyga: Magnonics: From Fundamentals to Applications

  • Formatas: PDF+DRM
  • Serija: Topics in Applied Physics 125
  • Išleidimo metai: 15-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642302473
  • Formatas: PDF+DRM
  • Serija: Topics in Applied Physics 125
  • Išleidimo metai: 15-Aug-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642302473

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Spin waves (and their quanta magnons) can effectively carry and process information in magnetic nanostructures. By analogy to photonics, this research field is labelled magnonics. It comprises the study of excitation, detection, and manipulation of magnons. From the practical point of view, the most attractive feature of magnonic devices is the controllability of their functioning by an external magnetic field. This book has been designed for students and researchers working in magnetism. Here the readers will find review articles written by leading experts working on realization of magnonic devices.

This book collects review articles by leading experts on the excitation, detection, and manipulation of magnons, on the controllability of their function via external magnetic field, and on research pursuing the realization of magnonic devices.
Part I Magnonic Modes in Nanomagnets, Chaotic and Coherent Magnonic States
1 Spin-Wave Eigen-modes in a Normally Magnetized Nano-pillar
3(14)
V.V. Naletov
G. de Loubens
S. Borlenghi
O. Klein
1.1 Introduction
3(2)
1.2 Identification of the Spin-Wave Modes
5(9)
1.2.1 Single Magnetic Disk
6(1)
1.2.2 Double Magnetic Disks
7(2)
1.2.3 Micromagnetic Simulations vs. Mechanical-FMR Experiments
9(5)
1.3 Conclusion
14(3)
References
14(3)
2 Bottom up Magnonics: Magnetization Dynamics of Individual Nanomagnets
17(12)
P.S. Keatley
P. Gangmei
M. Dvornik
R.J. Hicken
J. Grollier
C. Ulysse
J.R. Childress
J.A. Katine
2.1 Introduction
17(1)
2.2 Experimental Methods and Sample Details
18(2)
2.3 Results and Discussion
20(7)
2.4 Summary
27(2)
References
27(2)
3 Features of Chaotic Spin Waves in Magnetic Film Feedback Rings
29(10)
Aaron M. Hagerstrom
Mingzhong Wu
3.1 Introduction
29(1)
3.2 Experiments
30(2)
3.3 Frequency- and Time-Domain Signals
32(1)
3.4 Ambiguity Functions
32(1)
3.5 Tuning of Ambiguity Function Properties via Ring Gain
33(2)
3.6 Effects of Signal Duration on Ambiguity Function
35(1)
3.7 Cross Ambiguity Function
35(2)
3.8 Conclusion
37(2)
References
38(1)
4 Magnon Coherent States and Condensates
39(20)
Sergio M. Rezende
4.1 Introduction
39(2)
4.2 Coherent Magnon States
41(2)
4.3 Linear Excitation of Magnons by a Microwave Field
43(1)
4.4 Microwave Excitation of Parametric Magnons in Thin Films
44(2)
4.5 Bose-Einstein Condensation of a Microwave Driven Interacting Magnon Gas
46(7)
4.5.1 Dynamics of the Microwave Driven Magnon Gas in k Space
46(3)
4.5.2 Coherence of the Magnon Condensate
49(2)
4.5.3 Wavefunction of the Magnon Condensate
51(2)
4.6 Summary
53(6)
References
54(5)
Part II Probing and Manipulation of Magnons with Femtosecond Light and Polarized Electrons: Experiment and Simulations
5 The Role of Angular Momentum in Ultrafast Magnetization Dynamics
59(12)
Andrei Kirilyuk
Alexey V. Kimel
Theo Rasing
5.1 Introduction
59(1)
5.2 Precession in Ferrimagnetic Materials
60(3)
5.3 Laser-Induced Magnetization Reversal
63(1)
5.4 Transient Ferromagnetic State
64(4)
5.5 Conclusions
68(3)
References
69(2)
6 Photo-Magnonics
71(12)
Benjamin Lenk
Fabian Garbs
Henning Ulrichs
Nils Abeling
Markus Munzenberg
6.1 Introduction
71(2)
6.1.1 Spin-Wave Modes in a Thin Ferromagnetic Film
72(1)
6.2 Samples and Experiments
73(1)
6.2.1 Thin-Film Magnetization Dynamics
73(1)
6.3 Bloch-Like Modes in CoFeB Antidot Lattices
74(3)
6.3.1 Effects of Antidot-Lattice Symmetry
76(1)
6.4 Spin-Wave Spectra from Plane-Wave Calculations
77(1)
6.5 Localized Modes in Nickel Antidot Lattices
78(1)
6.6 Outlook: Magnonic Control over Spin Waves
79(4)
References
80(3)
7 Probing Magnons by Spin-Polarized Electrons
83(18)
K. Zakeri
J. Kirschner
7.1 Introduction
83(1)
7.2 Basic Concepts
84(8)
7.2.1 Spin Waves
85(1)
7.2.2 Stoner Excitations
86(2)
7.2.3 Heisenberg Description of Magnons
88(1)
7.2.4 Spin Dependence of Electron Scattering
89(3)
7.3 Spin-Polarized Electron Energy Loss Spectroscopy
92(2)
7.4 Recent Experimental Achievements
94(3)
7.4.1 Magnon Excitations in Ferromagnetic Thin Films
94(1)
7.4.2 Distinguishing Between Magnons and Phonons
95(2)
7.5 Conclusion
97(4)
References
97(4)
8 Micromagnetic Simulations in Magnonics
101(18)
M. Dvornik
Y. Au
V.V. Kruglyak
8.1 Introduction
101(1)
8.2 Real-Space-Time Domain Analysis: Magnonic Devices
102(3)
8.3 Real-Space-Frequency Domain Analysis: Magnonic Normal Modes
105(3)
8.4 Reciprocal-Space-Frequency Domain: Magnonic Dispersion and Scattering Parameters
108(4)
8.5 Semargl
112(1)
8.6 Conclusions and Outlook
113(6)
References
114(5)
Part III Magnon Spintronics: Spin Currents, Spin Pumping and Magnonic Spin-Torque Devices
9 Spin Waves, Spin Currents and Spin Seebeck Effect
119(10)
Hiroto Adachi
Sadamichi Maekawa
9.1 Introduction
119(1)
9.2 Local Picture of Thermal Spin Injection
120(3)
9.3 Magnon-Driven Spin Seebeck Effect
123(2)
9.4 Phonon-Drag Spin Seebeck Effect
125(2)
9.5 Conclusion
127(2)
References
127(2)
10 Spin Pumping at Ytrium Iron Garnet Interfaces
129(14)
Capucine Burrowes
Bretislav Heinrich
10.1 Introduction
129(1)
10.2 Theory of Spin Pumping
130(4)
10.2.1 Spin Transport by Spin Diffusion in a NM
132(2)
10.2.2 Spin Transport in the Presence of Paramagnons
134(1)
10.3 Experimental Results and Discussion
134(9)
10.3.1 FMR
134(1)
10.3.2 YIG/Au
135(4)
10.3.3 YIG/Pd
139(1)
References
140(3)
11 Spin-Torque Microwave Detectors
143(20)
Oleksandr V. Prokopenko
Ilya N. Krivorotov
Thomas J. Meitzler
Elena Bankowski
Vasil S. Tiberkevich
Andrei N. Slavin
11.1 Introduction
144(1)
11.2 Basic Physics of STT and TMR
145(1)
11.3 Small-Angle In-Plane Dynamical Regime of STMD Operation
146(9)
11.3.1 Analytical Theory of Noise Properties of a STMD in IP-Regime
147(6)
11.3.2 The Performance of a STMD in the Presence of Thermal Noise
153(2)
11.4 Large-Angle Out-of-Plane Dynamical Regime of STMD Operation
155(5)
11.4.1 Analytical Description of OOP-Regime
155(3)
11.4.2 Performance of a STMD in OOP-Regime
158(2)
11.5 Summary
160(3)
References
161(2)
12 Spin-Wave Emission from Spin-Torque Nano-Oscillators and Its Control by Microwave Pumping
163(14)
Vladislav E. Demidov
Sergei Urazhdin
Sergej O. Demokritov
12.1 Introduction
163(1)
12.2 Studied Samples and Their Electronic Characterization
164(2)
12.3 BLS Characterization of the Emitted Spin Waves
166(2)
12.4 Relationship Between the Emission Characteristics and the Spin-Wave Spectrum
168(2)
12.5 Nonlinear Frequency Conversion in STNO
170(2)
12.6 Effect of the Microwave Pumping on the Spin-Wave Emission Characteristics
172(1)
12.7 Summary
173(4)
References
174(3)
13 Nano-Contact Spin-Torque Oscillators as Magnonic Building Blocks
177(14)
Stefano Bonetti
Johan Akerman
13.1 Introduction
177(2)
13.1.1 Magnonics and Magnonic Devices
177(1)
13.1.2 Spin-Transfer Torque
178(1)
13.1.3 Scope
178(1)
13.2 Fabrication of Nano-Contact STOs
179(1)
13.3 Spin Wave Dynamics in Nano-Contact STOs
180(3)
13.3.1 Fundamentals
180(1)
13.3.2 Propagating Waves as Magnonic Signals
181(2)
13.4 Nano-Contact-Based Magnonic Building Blocks
183(2)
13.4.1 Spin Wave Injectors
183(1)
13.4.2 Spin Wave Manipulators
184(1)
13.4.3 Spin Wave Detectors
184(1)
13.5 Conclusions
185(6)
References
185(6)
Part IV Static and Dynamic Magnonic Crystals
14 Spin Waves in Artificial Crystals and Metamaterials Created from Nanopatterned Ni80Fe20 Antidot Lattices
191(14)
Sebastian Neusser
Georg Duerr
Rupert Huber
Dirk Grundler
14.1 Introduction
191(1)
14.2 Nanofabrication and All-Electrical Spin-Wave Spectroscopy
192(1)
14.3 Antidot Lattices in the Short Wavelength Limit: Bandgap Materials
193(5)
14.3.1 Large-Period Antidot Lattice: Forbidden Frequency Gaps due to Bragg Reflection
193(3)
14.3.2 Short-Period Antidot Lattice: Miniband Formation due to Coherent Coupling of Edge Modes
196(2)
14.4 Antidot Lattice in the Long Wavelength Limit: Effective-Media Concept
198(3)
14.4.1 Effective Magnetization of a Nanopatterned Antidot Lattice
198(1)
14.4.2 Transmission of Spin Waves Across the Boundary of an Antidot Lattice
199(2)
14.5 Conclusions
201(4)
References
201(4)
15 Spin Wave Band Structure in Two-Dimensional Magnonic Crystals
205(18)
G. Gubbiotti
S. Tacchi
M. Madami
G. Carlotti
R. Zivieri
F. Montoncello
F. Nizzoli
L. Giovannini
15.1 Introduction
206(1)
15.2 Sample Details and Experiment
207(1)
15.3 Theoretical Description: Dynamical Matrix Method Applied to 2D MCs
208(2)
15.4 Results and Discussion
210(9)
15.4.1 Sample #1: Bidimensional Array of Disks
210(3)
15.4.2 Sample #2: Bidimensional Array of Circular Holes
213(6)
15.5 Summary
219(4)
References
219(4)
16 Normal Mode Theory for Magnonic Crystal Waveguide
223(20)
N.Y. Grigoryeva
B.A. Kalinikos
16.1 Introduction
223(4)
16.2 Landau-Lifshitz Equation of Motion for Space Harmonics in Magnonic Crystal Waveguide
227(5)
16.3 General Dispersion Relation for Dipole-Exchange Spin Waves in Magnonic Crystal Waveguide
232(5)
16.4 Example of Theory Application
237(2)
16.5 Conclusion
239(4)
References
239(4)
17 The Dynamic Magnonic Crystal: New Horizons in Artificial Crystal Based Signal Processing
243(16)
Andrii V. Chumak
Alexy D. Karenowska
Alexander A. Serga
Burkard Hillebrands
17.1 Introduction
243(1)
17.2 The State-of-the-Art in Magnonic Crystal Science
244(1)
17.3 The Design of Dynamic Magnonic Crystals
245(2)
17.4 The Engineering of Dynamic Magnonic Crystal Characteristics
247(2)
17.5 A Signal See-Saw: Oscillatory Inter-modal Energy Exchange in the Dynamic Magnonic Crystal
249(3)
17.6 Frequency Conversion and Time Reversal in the Dynamic Magnonic Crystal
252(3)
17.7 Concluding Comments
255(4)
References
255(4)
Index 259