Atnaujinkite slapukų nuostatas

El. knyga: Managing Global Warming: An Interface of Technology and Human Issues

Edited by (Emeritus Professor, University of KwaZulu-Natal, South Africa)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 08-Nov-2018
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128141052
  • Formatas: EPUB+DRM
  • Išleidimo metai: 08-Nov-2018
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128141052

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

What are the causes of global warming? What options are available to solving the global warming problem? How can each option be realistically implemented?

Technological Solutions to Global Warming is the first book of its kind, based on scientific content providing an overall reference looking at the problems of global warming and possible solutions in one volume.
Containing all the necessary authoritative chapters written by scientists and engineers working in the field; each chapter includes the very latest research and references in the potential impact of wind, solar, hydro, geo-engineering and other energy technologies on climate change.

With such a wide ranging set of topics and solutions readers will find a beneficial synergy, between the different solutions and issues, making this a handbook for engineers, professors, leaders and policy makers
  • Presents chapters that are accompanied by an easy reference summary
  • Includes up-to-date options and technical solutions for global warming through color imagery
  • Provides up-to-date information as presented by a collection of renowned global experts
List of contributors
xiii
Section A Introduction
1(114)
1 Why do we have global warming?
3(14)
Trevor M. Letcher
1.1 The greenhouse effect
3(2)
1.2 The root cause of global warming
5(2)
1.3 Other causes of global warming and climate change Including global cooling
7(2)
1.4 Indicators of climate change
9(1)
1.5 Why we must act now
10(1)
1.6 What must be done to reduce global warming?
10(1)
1.7 Are wt making progress in reducing global warming?
11(2)
1.8 Conclusions
13(4)
References
14(3)
2 The Paris Agreement---Implications for greenhouse gas removal and zero emissions energy production
17(50)
Robert Chris
2.1 Introduction
17(1)
2.2 Methodology
18(4)
2.3 Plausibility
22(1)
2.4 The numbers
23(25)
2.5 Applying plausibility
48(11)
2.6 Policy implications
59(3)
2.7 Delivering ZEE
62(2)
2.8 Conclusion
64(3)
References
65(2)
3 Current status of electricity generation in the world and future of nuclear power industry
67(48)
I. Piora
R. Duffey
1.1 Statistics on electricity generation in the world
69(17)
3.2 Share and operation of various energy sources in an electrical end
86(9)
3.3 Modern thermal power plants
95(7)
3.4 Modern nuclear power reactors and nuclear power plants
102(9)
3.5 Conclusions
111(4)
Acknowledgments
113(1)
References
113(2)
Section B Reducing CO2: Fossil Fuels, Nuclear Energy
115(122)
4 Current and future nuclear power reactors and plants
117(82)
I. Pioro
R. Duffey
4.1 Introduction
120(2)
4.2 Current nuclear power reactors and NPPs
122(26)
4.3 Generation IV International Forum
148(18)
4.4 Comparison of thermophysical properties of reactor coolants
166(18)
4.5 Concise overview of conventional and alternative nuclear fuels
184(15)
Acknowledgments
194(1)
References
194(5)
5 Nuclear fusion: What of the future?
199(22)
Richard Kembleton
5.1 The promise of fusion
199(4)
5.2 Fusion concepts
203(4)
5.3 Main technology challenges
207(5)
5.4 Fusion's role in future energy markets
212(2)
5.5 Status of current research
214(4)
5.6 Summary
218(3)
References
218(2)
Further Reading
220(1)
6 Global renewable energy resources and use in 2050
221(16)
Patrick Moriarty
Damon Honnery
6.1 Introduction
221(3)
6.2 Biomass energy
224(2)
6.3 Hydroelectricity
226(1)
6.4 Wind energy
227(1)
6.5 Solar energy
228(1)
6.6 Geothermal energy
229(2)
6.7 Other possible renewable energy sources
231(1)
6.8 Discussion
232(5)
References
234(1)
Further Reading
235(2)
Section C Reducing Greenhouse Gases: Renewables and Zero Carbon/Carbon Neutral Forms of Energy and Electric Cars
237(264)
7 Methane hydrate as a "new energy"
239(26)
Liang Cui Azizul Moqsud
Masayuki Hyado
Suhhomoy Bhattacharya
7.1 Introduction
239(5)
7.2 Production methods 2-42
7.3 Testing equipment and sample preparation
244(8)
7.4 MH dissociation tests
252(6)
7.5 DEM simulation of MH dissociation process
258(5)
7.6 Conclusions
263(2)
References
264(1)
8 Hydropower
265(52)
Anund Killingtveit
8.1 Introduction
266(1)
8.2 Hydropower generation---Theory
267(2)
8.3 Technology
269(3)
8.4 Classification according to size---Small and large hydro
272(1)
8.5 Cutting-edge technology
273(6)
8.6 Hydropower resources---Potential
279(4)
8.7 Existing generation---Regional and global stains
283(6)
8.8 Cost issues
289(7)
8.9 Integration into broader energy system
296(5)
8.10 Sustainability issues
301(9)
8.11 Hydropower in the future Potential deployment
310(2)
8.12 Summary
312(5)
References
313(4)
9 Solar energy
317(16)
Lee Phillips
9.1 What is solar energy?
317(3)
9.2 Solar energy adoption
320(4)
9.3 Barriers to solar energy adoption
324(1)
9.4 Research in solar devices
325(3)
9.5 The potential of solar energy to reduce greenhouse gas emissions
328(5)
References
330(3)
10 Wind power: A sustainable way to limit climate change
333(32)
Georgia Nikitas
Subhamoy Bhattacharya
Nathan Vimalan
Hasan Emre Demirci
Nikolaos Nikitas
Prashant Kumar
10.1 Wind among the renewables
333(3)
10.2 Wind power data
336(3)
10.3 Wind energy in a nutshell
339(3)
10.4 Wind turbines
342(9)
10.5 Offshore wind farm site selection
351(2)
10.6 Case study: Performance of nearshore wind farm during 2012 Tohoku earthquake
353(2)
10.7 Future of offshore wind farm and sustainability
355(7)
10.8 Summary
362(3)
References
362(3)
11 Storing electrical energy
365(14)
Trevor M. Letcher
11.1 Introduction
365(1)
11.2 Electricity energy storage
366(2)
11.3 Pumped hydropower
368(2)
11.4 Compressed air energy storage
370(1)
11.5 Battery energy storage systems
371(1)
11.6 Liquid air energy storage
372(1)
11.7 Superconducting magnetic storage
373(1)
11.8 Chemical Storage (H2 and CH4)
373(1)
11.9 Vehicle-to-grid systems
374(1)
11.10 Other methods of storing electrical energy
374(1)
11.11 Conclusion
374(5)
References
375(2)
Further Reading
377(2)
12 Bioenergy
379(20)
Mirjam Roder
Andrew Welfle
12.1 The role of bioenergy
379(1)
12.2 Advantages of bioenergy
380(2)
12.3 Emission reductions and carbon balance
382(1)
12.4 Sustainability
383(2)
12.5 Bioenergy case study: Generating low carbon energy from agricultural & food wastes
385(2)
12.6 Bioenergy case study: Generating low carbon energy from straws & agricultural residues
387(2)
12.7 Bioenergy case study: Generating low carbon energy from energy crops
389(4)
12.8 Conclusion
393(6)
References
393(6)
13 Quantifying the climate effects of forest-based bioenergy
399(11)
Annette L. Cowie
Miguel Brandao
Sampo Soimakallio
13.1 Introduction
399(1)
13.2 The forest carbon cycle
400(1)
13.3 The bioenergy life cycle
400(1)
13.4 Forest bioenergy as a coproduct of forestry
401(2)
13.5 Factors to consider in quantifying the climate effects of forest bioenergy
403(10)
13.6 Summary of recommendations
413(1)
13.7 Conclusions
414(1)
Acknowledgments
414(1)
References
414(5)
14 Hydrogen fuel, fuel cells, and methane
419(45)
Johannes Lindorfer
Cerda Reiter
Robert Tichler
Horst Steinmuller
14.1 Introduction, characterizing "given gas" option!
419(6)
14.2 Potential pathways Of renewable gas technology
425(21)
14.3 Conclusions
446(9)
Acknowledgments
448(1)
References
448(5)
Further Reading
453(2)
15 An overview of ground-source heat pump technology
455(32)
Run Martand Singh
Abubakar Kawuwa Sani
Tony Amis
15.1 Introduction
456(2)
15.2 Ground-source heat pump (QSHP) system
458(1)
15.3 Components of the OSHP system
458(3)
15.4 Types of ground-source heat pump systems
461(5)
15.5 Design and installation oi ground source heal pump systems
466(1)
15.6 Factors affecting the performance of a QSHP system
467(2)
15.7 Environmental social, and economic impact of the OSHP system
469(4)
15.8 Case studies of OSHP system
473(8)
15.9 Conclusion
481(6)
References
481(4)
Further leading
485(2)
16 Geological sequestration of carbon dioxide
487(14)
Mojgan Hadi Mosleh
Majid Sedighi
Masoud Babaei
Matthew Turner
16.1 Introduction
487(1)
16.2 Overview and engineering aspects of the technology
488(3)
16.3 CO2 geological storage options
491(4)
16.4 Existing worldwide projects
495(1)
16.5 Environmental aspects
496(2)
16.6 Summery
498(3)
Acknowledgment
498(1)
References
498(3)
Section D Reducing CO2: Industry, Farming and Improved Efficiency
501(78)
17 Polymers from plants: Biomass fixed carbon dioxide as a resource
503(24)
Janet L. Scott
Antoine Buchard
17.1 Introduction
503(1)
17.2 Monomers and polymers from plant biomass
504(10)
17.3 Polymers from plants
514(4)
17.4 Critical considerations for plant-derived chemicals for GHG mitigation
518(9)
References
521(6)
18 Carbon Dioxide Utilization as a Mitigation Tool
527(26)
Peter Styling
18.1 Introduction
527(5)
18.2 Carbon capture
532(2)
18.3 CO2-derived synthetic fuels and CO2-enhanced oil recovery
534(2)
18.4 Magic hydrogen (r-H2)
536(1)
18.5 The relative importance of synthetic hydrocarbons and oxygenates in a low-C fuel economy
537(5)
18.6 Accelerated mineralization
542(1)
18.7 Polymers
543(2)
18.8 Catalysis is key
545(1)
18.9 Where does the future lie?
546(1)
18.10 Conclusions
547(6)
Acknowledgments
547(1)
References
548(5)
19 Greener farming: managing carbon and nitrogen cycles to reduce greenhouse gas emissions from agriculture
553(26)
Laurence G. Smith
Nicolas H. Lumpkin
19.1 Climate change and agriculture
554(1)
19.2 Greener farming systems
555(1)
19.3 Improvements in carbon cycling for greenhouse gas mitigation
555(8)
19.4 Improvements in nitrogen cycling and nitrogen-use efficiency for greenhouse gas mitigation
563(4)
19.5 Context specificity and data sources used in greenhouse gas assessments
567(1)
19.6 Future research
568(2)
19.7 Conclusions
570(9)
References
571(8)
Section E Geo-Engineering
579(58)
20 Geoengineering: Sunlight reflection methods and negative emissions technologies for greenhouse gas removal
581(56)
Renaud de Richter
Sylvain Caillol
Tingzhen Minx
20.1 Why geoengineering?
582(1)
20.2 The Earth's energy budget imbalance is due to greenhouse gases
582(2)
20.3 Sunlight reflection methods and solar radiation management
584(8)
20.4 Negative emissions technologies
592(21)
20.5 Greenhouse gases removal
613(3)
20.6 Earth (or thermal) radiation management
616(1)
20.7 Geoengineering patents
617(2)
20.8 What is next?
619(1)
20.9 Conclusions
620(17)
References
621(15)
Further Reading
636(1)
Section F Environmental and Human Issues
637(146)
21 Normative issues of geoengineering technologies
639(20)
Clair Heyward
21.1 Introduction
639(3)
21.2 Normative issues raised by geoengineering technologies: An overview
642(10)
21.3 Prom morality to governance: Developing social regulation for NETs and SRMs
652(2)
21.4 Conclusion
654(5)
Acknowledgments
655(1)
References
655(4)
22 The social cost of carbon: capturing the costs of future climate impacts in US policy
659(36)
Peter H. Howard
22.1 Introduction
659(2)
22.2 Climate change in the CBA framework
661(5)
22.3 Challenges of including climate change in the CBA framework
666(20)
22.4 The appropriate central SCC value
686(2)
22.5 Conclusions
688(7)
References
689(5)
Further Reading
694(1)
23 Migration and climate change
695(16)
Andrea C. Simonelli
23.1 Introduction
695(1)
23.2 Regional context and events
696(2)
23.3 Academic background
698(3)
23.4 Migration governance
701(6)
23.5 Conclusion
707(4)
References
708(3)
24 Social justice and climate change
711(18)
Alice Venn
24.1 Introduction
711(1)
24.2 Conceptualizing climate justice
712(7)
24.3 Linking climate justice and fundamental rights
719(3)
24.4 Conclusion
722(7)
References
723(6)
25 The economics of geoengineering
729(22)
Anthony Harding
Juan B. Moreno-Cruz
25.1 Introduction
729(2)
25.2 Feasibility
731(2)
25.3 Efficiency vs. equity in geoengineering
733(5)
25.4 Strategy
738(3)
25.5 Risk and uncertainty
741(4)
25.6 Conclusion
745(6)
References
746(5)
26 Justice in managing global climate change
751(18)
Ivo Wallimann-Helmer
26.1 Ethical evaluation in managing climate change
751(1)
26.2 The ethical challenges in international climate politics
752(5)
26.3 Domains of climate justice
757(4)
26.4 Differentiating responsibilities
761(4)
26.5 Conclusion
765(4)
References
766(3)
27 Local action that changes the world: Fresh perspectives on climate change mitigation and adaptation from Australia
769(14)
Phil Ireland
Declan Clausen
27.1 Introduction
769(3)
27.2 Climate change and the local scale
772(1)
27.3 Local government policy options
773(3)
27.4 Household participation in emission reductions
776(2)
27.5 Individual advocacy and campaigning
778(2)
27.6 Conclusion
780(3)
References
780(3)
Index 783
Professor Trevor Letcher is an Emeritus Professor at the University of KwaZulu-Natal, South Africa, and living in the United Kingdom. He was previously Professor of Chemistry, and Head of Department, at the University of the Witwatersrand, Rhodes University, and Natal, in South Africa (1969-2004). He has published over 300 papers on areas such as chemical thermodynamic and waste from landfill in peer reviewed journals, and 100 papers in popular science and education journals. Prof. Letcher has edited and/or written 32 major books, of which 22 were published by Elsevier, on topics ranging from future energy, climate change, storing energy, waste, tyre waste and recycling, wind energy, solar energy, managing global warming, plastic waste, renewable energy, and environmental disasters. He has been awarded gold medals by the South African Institute of Chemistry and the South African Association for the Advancement of Science, and the Journal of Chemical Thermodynamics honoured him with a Festschrift in 2018. He is a life member of both the Royal Society of Chemistry (London) and the South African Institute of Chemistry. He is on the editorial board of the Journal of Chemical Thermodynamics, and is a Director of the Board of the International Association of Chemical Thermodynamics since 2002.