Atnaujinkite slapukų nuostatas

Markov Decision Processes and Reinforcement Learning for Timely UAV-IoT Data Collection Applications [Kietas viršelis]

  • Formatas: Hardback, 113 pages, aukštis x plotis: 235x155 mm, 34 Illustrations, color; 1 Illustrations, black and white; XII, 113 p. 35 illus., 34 illus. in color., 1 Hardback
  • Serija: Studies in Computational Intelligence 1220
  • Išleidimo metai: 01-Sep-2025
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031970101
  • ISBN-13: 9783031970108
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 113 pages, aukštis x plotis: 235x155 mm, 34 Illustrations, color; 1 Illustrations, black and white; XII, 113 p. 35 illus., 34 illus. in color., 1 Hardback
  • Serija: Studies in Computational Intelligence 1220
  • Išleidimo metai: 01-Sep-2025
  • Leidėjas: Springer International Publishing AG
  • ISBN-10: 3031970101
  • ISBN-13: 9783031970108
Kitos knygos pagal šią temą:

This book offers a structured exploration of how Markov Decision Processes (MDPs) and Deep Reinforcement Learning (DRL) can be used to model and optimize UAV-assisted Internet of Things (IoT) networks, with a focus on minimizing the Age of Information (AoI) during data collection. Adopting a tutorial-style approach, it bridges theoretical models and practical algorithms for real-time decision-making in tasks like UAV trajectory planning, sensor transmission scheduling, and energy-efficient data gathering. Applications span precision agriculture, environmental monitoring, smart cities, and emergency response, showcasing the adaptability of DRL in UAV-based IoT systems. Designed as a foundational reference, it is ideal for researchers and engineers aiming to deepen their understanding of adaptive UAV planning across diverse IoT applications.  

Introduction to AoI in UAV-assisted Sensor and IoT Systems.- AoI aware
UAV IoT Modeling using MDPs.- Reinforcement Learning and DRL for AoI aware
UAV IoT.- Challenges and Future Considerations.