Atnaujinkite slapukų nuostatas

El. knyga: Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers

(Distinguished University Teaching Professor and Professor of Chemical Engineering and Materials Science at the University of Minnesota , Minneapolis, MN, USA)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 28-Dec-2015
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780123851338
  • Formatas: EPUB+DRM
  • Išleidimo metai: 28-Dec-2015
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780123851338

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers teaches students the fundamental principles involved in the processing of engineering materials, specifically metals, ceramics and polymers, from starting or raw materials through to the final functional forms.

The study of materials processing is recognized as one of the four key components in the field of Materials Science and Engineering (MSE), alongside structure, properties, and performance. Processing is frequently approached from a materials specific point of view with courses and books that treat only one type of engineering material. This new text covers processing of the three main classes of engineering materials, including metals, ceramics, and polymers, in a unified approach that is based on ‘unit operations’. In this way, students are able to see connections and commonalities in scientific and engineering principles.

  • Coverage of all classes of engineering materials in a single text provides a self-contained uniform approach and consistent nomenclature to allow for easier comparisons between various materials and processes
  • Development of connections between processing and structure builds on students’ existing knowledge of structure - property relationships
  • Emphasis on fundamental principles gives students a strong foundation for understanding processing methods
  • Examples of standard and newer processing methods throughout provide students with a good foundation in the concepts while being introduced to newer methods that they will likely encounter in industry and research
  • Coverage of environmental impact and process economics helps students put considerations for process selection in the context of current environmental concerns

Recenzijos

"...an excellent introduction to materials processing for students, researchers, and newcomers to the field. It covers a combination of fundamentals and applications of materials science and engineering, and provides students with comprehensive knowledge supported by solved examples and problems." --MRS Bulletin

Daugiau informacijos

The fundamental concepts of the materials processing of metals, ceramics and polymers in a single, unified textbook for engineering students.
Preface xiii
Acknowledgements xv
1 Introduction to Materials Processing
1(20)
1.1 Materials Processing: Definition and Scope
1(3)
1.2 Three Approaches to Materials Processing
4(3)
1.3 Materials Processing Steps
7(3)
1.4 Processing of Metals
10(3)
1.5 Processing of Ceramics
13(3)
1.6 Processing of Polymers
16(3)
1.7 Summary
19(2)
Bibliography and Recommended Reading
19(1)
Cited References
20(1)
2 Starting Materials
21(84)
2.1 What is a Starting Material?
21(1)
2.2 Metals
22(28)
2.2.1 Introduction
22(3)
2.2.2 Bulk Metal Starting Materials
25(10)
2.2.3 Metal Powder Starting Materials
35(15)
2.3 Ceramics
50(18)
2.3.1 Introduction
50(1)
2.3.2 Ceramic Powder Starting Materials
51(9)
2.3.3 Glass Starting Materials
60(8)
2.4 Polymers
68(27)
2.4.1 Introduction
68(6)
2.4.2 Thermoplastic Polymer Starting Materials
74(15)
2.4.3 Thermoset Polymer Starting Materials
89(6)
2.5 Summary
95(10)
Bibliography and Recommended Reading
97(1)
Cited References
98(1)
Questions and Problems
98(1)
Questions
98(2)
Problems
100(5)
3 Melt Processes
105(146)
3.1 Introduction
105(2)
3.2 Fundamentals
107(46)
3.2.1 Melt Structure and Surface Tension
107(8)
3.2.2 Melt Rheology
115(14)
3.2.3 Flow Fundamentals
129(10)
3.2.4 Heat Transfer Fundamentals
139(5)
3.2.5 Solidification
144(9)
3.3 Shape Casting
153(30)
3.3.1 Process Overview
153(2)
3.3.2 Metal Melt Preparation
155(1)
3.3.3 Sand Casting
156(15)
3.3.4 Permanent Mold Casting
171(4)
3.3.5 Die Casting
175(3)
3.3.6 Post-Processing of Cast Metal Parts
178(5)
3.4 Casting of Flat Sheets
183(9)
3.4.1 Process Overview
183(1)
3.4.2 Class Melt Preparation
183(1)
3.4.3 Float Glass Process
184(5)
3.4.4 Fusion Downdraw Process
189(1)
3.4.5 Post-Processing Operations for Glass Sheets
190(2)
3.5 Extrusion
192(21)
3.5.1 Process Overview
192(1)
3.5.2 Melting and Flow in a Single Screw Extruder
192(9)
3.5.3 Die Flow
201(1)
3.5.4 Single Screw Extruder Operating Diagram
201(4)
3.5.5 Twin Screw Extrusion
205(2)
3.5.6 Die Exit Effects
207(4)
3.5.7 Extruded Products and Solidification
211(2)
3.6 Injection Molding
213(13)
3.6.1 Process Overview
213(1)
3.6.2 The Injection Molding Machine and Cycle
214(3)
3.6.3 Mold Flow
217(4)
3.6.4 Packing and Solidification
221(2)
3.6.5 Reaction Injection Molding
223(3)
3.7 Blow Molding
226(6)
3.7.1 Process Overview
226(1)
3.7.2 Blow Molding of Glass
227(2)
3.7.3 Blow Molding of Polymers
229(3)
3.8 Melt-Based Additive Processes
232(6)
3.8.1 Process Overview
232(1)
3.8.2 Fused Deposition Modeling (FDM)
233(4)
3.8.3 Inkjet Printing of Melts
237(1)
3.9 Summary
238(13)
Bibliography and Recommended Reading
240(2)
Cited References
242(2)
Questions and Problems
244(1)
Questions
244(1)
Problems
245(6)
4 Solid Processes
251(92)
4.1 Introduction
251(1)
4.2 Fundamentals
252(33)
4.2.1 Deformation and Plastic Flow under Uniaxial Tension
252(15)
4.2.2 Effects of Temperature and Strain Rate on Deformation
267(5)
4.2.3 Deformation and Yielding under Triaxial Stresses
272(10)
4.2.4 Friction
282(2)
4.2.5 Efficiency and Temperature Rise
284(1)
4.3 Solid Processes
285(48)
4.3.1 Process Overview
285(2)
4.3.2 Wire Drawing
287(12)
4.3.3 Extrusion
299(9)
4.3.4 Forging
308(10)
4.3.5 Rolling
318(7)
4.3.6 Bending
325(3)
4.3.7 Thermoforming
328(3)
4.3.8 Superplastic Forming
331(2)
4.4 Summary
333(10)
Bibliography and Recommended Reading
335(1)
Cited References
336(1)
Questions and Problems
337(1)
Questions
337(1)
Problems
338(3)
Appendix: Stress in a Spherical Pressure Vessel
341(2)
5 Powder Processes
343(72)
5.1 Introduction
343(3)
5.2 Fundamentals
346(24)
5.2.1 Powder Characteristics and Flow
346(7)
5.2.2 Sintering and Microstructure Development
353(14)
5.2.3 Dimensional Changes during Densification
367(3)
5.3 Pressing
370(26)
5.3.1 Process Overview
370(2)
5.3.2 Powder Preparation
372(4)
5.3.3 Uniaxial Pressing
376(13)
5.3.4 Isostatic Pressing
389(2)
5.3.5 Post-Forming Processes for Green Parts
391(1)
5.3.6 Hot Pressing and Hot Isostatic Pressing
392(4)
5.4 Rotational Molding
396(4)
5.4.1 Process Overview
396(1)
5.4.2 Powder Preparation
397(1)
5.4.3 Rotational Molding Process Steps
398(2)
5.5 Powder-Based Additive Processes
400(7)
5.5.1 Process Overview
400(1)
5.5.2 Selective Laser Sintering (Melting)
401(5)
5.5.3 Inkjet Binder Printing ("3D Printing")
406(1)
5.6 Summary
407(8)
Bibliography and Recommended Reading
409(1)
Cited References
410(1)
Questions and Problems
411(1)
Questions
411(1)
Problems
412(3)
6 Dispersion and Solution Processes
415(98)
Lorraine F. Francis
Christine C. Roberts
6.1 Introduction
415(3)
6.2 Fundamentals
418(46)
6.2.1 Colloidal Dispersions
418(24)
6.2.2 Polymer Solutions
442(6)
6.2.3 Rheology of Dispersions and Solutions
448(7)
6.2.4 Characteristics of Volatile Liquids for Dispersions and Solutions
455(1)
6.2.5 Drying
455(7)
6.2.6 Curing of Liquid Monomers
462(2)
6.3 Shape Casting
464(9)
6.3.1 Process Overview
464(2)
6.3.2 Capillary Action
466(1)
6.3.3 Predicting Cast Layer Thickness
467(5)
6.3.4 Slip Casting Process Considerations
472(1)
6.3.5 Post-Processing Operations
473(1)
6.4 Coating and Tape Casting
473(18)
6.4.1 Process Overview
473(2)
6.4.2 Coating Methods
475(11)
6.4.3 Polymer Coatings
486(3)
6.4.4 Tape Casting of Ceramics
489(2)
6.5 Extrusion and Injection Molding
491(4)
6.5.1 Process Overview
491(1)
6.5.2 Extrusion of Concentrated Dispersions
491(3)
6.5.3 Powder Injection Molding
494(1)
6.6 Liquid Monomer-Based Additive Processes
495(10)
6.6.1 Process Overview
495(1)
6.6.2 Stereolithography (SLA)
495(5)
6.6.3 Inkjet Printing with Liquid Monomers
500(4)
6.7 Summary
504(1)
Bibliography and Recommended Reading
505(2)
Cited References
507(1)
Questions and Problems
508(1)
Questions
508(1)
Problems
509(4)
7 Vapor Processes
513(76)
Bethanie Joyce Hills Stadler
7.1 Introduction
513(2)
7.2 Fundamentals
515(25)
7.2.1 Kinetic Theory of Gases and Its Relationship to Vapor Processes
515(17)
7.2.2 Thin Film Microstructures
532(7)
7.2.3 Epitaxial Growth of Single Crystal Films
539(1)
7.3 Evaporation
540(15)
7.3.1 Process Overview
540(2)
7.3.2 Thermodynamics of Evaporation
542(4)
7.3.3 Evaporation of Alloys and Compounds
546(1)
7.3.4 Transport Phenomenon and Film Uniformity
547(8)
7.4 Sputtering
555(11)
7.4.1 Process Overview
555(2)
7.4.2 Plasma Physics
557(2)
7.4.3 Magnetron Sputtering
559(2)
7.4.4 Radio Frequency (RF) Sputtering
561(1)
7.4.5 Reactive Sputtering
561(2)
7.4.6 Optimizing Sputtered Rates
563(3)
7.5 Chemical Vapor Deposition
566(12)
7.5.1 Process Overview
566(2)
7.5.2 Thermodynamics of Formation Reactions
568(2)
7.5.3 Types of Reactions
570(1)
7.5.4 Kinetics of CVD
571(2)
7.5.5 Deposition Rate and Uniformity
573(5)
7.6 Post-Processing of Films after Deposition
578(2)
7.6.1 Annealing
578(1)
7.6.2 Patterning
578(2)
7.7 Summary
580(9)
Bibliography and Recommended Reading
582(1)
Cited References
583(1)
Questions and Problems
583(1)
Questions
583(2)
Problems
585(4)
Appendix A 589(2)
Index 591
Dr. Lorraine F. Francis is Professor of Chemical Engineering and Materials Science at the University of Minnesota and she currently holds the 3M Chair in Experiential Learning in the College of Science and Engineering. Prof. Francis received a BS in Ceramic Engineering from Alfred University in 1985, and M.S. and Ph.D. in Ceramic Engineering from the University of Illinois in 1987 and 1990, respectively. She then joined the University of Minnesota. Professor Francis research interests are broadly in the area of materials processing, including coating and printing processes and microstructure development studies. She has advised or co-advised over 50 graduate students and published over 150 journal articles and one textbook. Professor Francis has received several honors. In 2019, she was given the title of College of Science and Engineering Distinguished Professor and in 2014 she received the Horace T. Morse - University of Minnesota Alumni Association Award for Outstanding Contributions to Undergraduate Education.