Atnaujinkite slapukų nuostatas

Nine Mathematical Challenges: An Elucidation [Minkštas viršelis]

Edited by , Edited by , Edited by , Edited by
  • Formatas: Paperback / softback, 221 pages, aukštis x plotis: 254x178 mm, weight: 413 g
  • Serija: Proceedings of Symposia in Pure Mathematics
  • Išleidimo metai: 30-Aug-2022
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470454904
  • ISBN-13: 9781470454906
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 221 pages, aukštis x plotis: 254x178 mm, weight: 413 g
  • Serija: Proceedings of Symposia in Pure Mathematics
  • Išleidimo metai: 30-Aug-2022
  • Leidėjas: American Mathematical Society
  • ISBN-10: 1470454904
  • ISBN-13: 9781470454906
Kitos knygos pagal šią temą:
This volume stems from the Linde Hall Inaugural Math Symposium, held from February 22-24, 2019, at California Institute of Technology, Pasadena, California.

The content isolates and discusses nine mathematical problems, or sets of problems, in a deep way, but starting from scratch. Included among them are the well-known problems of the classification of finite groups, the Navier-Stokes equations, the Birch and Swinnerton-Dyer conjecture, and the continuum hypothesis. The other five problems, also of substantial importance, concern the Lieb-Thirring inequalities, the equidistribution problems in number theory, surface bundles, ramification in covers and curves, and the gap and type problems in Fourier analysis. The problems are explained succinctly, with a discussion of what is known and an elucidation of the outstanding issues. An attempt is made to appeal to a wide audience, both in terms of the field of expertise and the level of the reader.
Preface vii
The Linde Hall Inaugural Math Symposium at Caltech ix
The finite simple groups and their classification
1(10)
Michael Aschbacher
The Birch and Swinnerton-Dyer Conjecture: A brief survey
11(20)
Ashay A. Burungale
Christopher Skinner
Ye Tian
Bounding ramification by covers and curves
31(14)
Helene Esnault
Vasudevan Srinivas
The Lieb-Thirring inequalities: Recent results and open problems
45(42)
Rupert L. Frank
Some topological properties of surface bundles
87(20)
Ursula Hamenstadt
Some recents advances on Duke's equidistribution theorems
107(26)
Philippe Michel
Gap and Type problems in Fourier analysis
133(16)
A. Poltoratski
Quantitative bounds for critically bounded solutions to the Navier-Stokes equations
149(46)
Terence Tao
The Continuum Hypothesis
195
W. Hugh Woodin
A. Kechris, California Institute of Technology, Pasadena, CA.

N. Makarov, California Institute of Technology, Pasadena, CA.

D. Ramakrishnan, California Institute of Technology, Pasadena, CA.

X. Zhu, California Institute of Technology, Pasadena, CA.