Atnaujinkite slapukų nuostatas

El. knyga: Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics

(University of Illinois at Chicago)
  • Formatas: PDF+DRM
  • Išleidimo metai: 26-Jan-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119689065
  • Formatas: PDF+DRM
  • Išleidimo metai: 26-Jan-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119689065

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Mathematical foundation of railroad vehicle systems : Geometry and mechanics develops the mathematical foundation of railroad vehicle systems with emphasis placed on the integration of geometry and mechanics. This geometry/mechanics integration is necessary for developing a sound mathematical foundation, accurate formulation of the nonlinear dynamic equations, and general computational algorithms that can be effectively used in the virtual prototyping, analysis, design, and performance evaluation of railroad vehicle systems. Mathematical foundation of railroad vehicle systems : Geometry and mechanics introduces basic concepts, formulations and computational algorithms used in railroad vehicle system dynamics. Shows how new mechanics-based approaches such as the absolute nodal coordinate formulation (ANCF) can be used to achieve the geometry/mechanics integration. It also discusses new problems and issues to be addressed in this area, and describes how geometry and mechanics approaches can be used in studying derailments"--

MASTER AND INTEGRATE THE GEOMETRY AND MECHANICS OF RAILROAD VEHICLE SYSTEM ENGINEERING WITH ONE PRACTICAL RESOURCE

Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics delivers a comprehensive treatment of the mathematical foundations of railroad vehicle systems. The book includes a strong emphasis on the integration of geometry and mechanics to create an accurate and accessible formulation of nonlinear dynamic equations and general computational algorithms that can be effectively used in the virtual prototyping, analysis, design, and performance evaluation of railroad vehicle systems.

Using basic concepts, formulations, and computational algorithms, including mechanics-based approaches like the absolute nodal coordinate formulation (ANCF), readers will understand how to integrate the geometry and mechanics of railroad vehicle systems. The book also discusses new problems and issues in this area and describes how geometric and mechanical approaches can be used in derailment investigations.

Mathematical Foundation of Railroad Vehicle Systems covers:

  • The mathematical foundation of railroad vehicle systems through the integration of geometry and mechanics
  • Basic concepts, formulations, and computational algorithms used in railroad vehicle system dynamics
  • New mechanics-based approaches, like the ANCF, and their use to achieve an integration of geometry and mechanics
  • Use of geometry and mechanics to study derailments
  • New problems and issues in the area of railroad vehicle systems
  • Designed for researchers and practicing engineers who work with railroad vehicle systems, Mathematical Foundation of Railroad Vehicle Systems: Geometry and Mechanics can also be used in senior undergraduate and graduate mechanical, civil, and electrical engineering programs and courses.

    Preface ix
    1 Introduction
    1(44)
    1.1 Differential Geometry
    4(5)
    1.2 Integration of Geometry and Mechanics
    9(5)
    1.3 Hunting Oscillations
    14(3)
    1.4 Wheel and Track Geometries
    17(5)
    1.5 Centrifugal Forces and Balance Speed
    22(4)
    1.6 Contact Formulations
    26(2)
    1.7 Computational MBS Approaches
    28(5)
    1.8 Derailment Criteria
    33(3)
    1.9 High-Speed Rail Systems
    36(5)
    1.10 Linear Algebra and Book Notations
    41(4)
    2 Differential Geometry
    45(38)
    2.1 Curve Geometry
    46(8)
    2.2 Surface Geometry
    54(3)
    2.3 Application to Railroad Geometry
    57(3)
    2.4 Surface Tangent Plane and Normal Vector
    60(2)
    2.5 Surface Fundamental Forms
    62(7)
    2.6 Normal Curvature
    69(3)
    2.7 Principal Curvatures and Directions
    72(4)
    2.8 Numerical Representation of the Profile Geometry
    76(2)
    2.9 Numerical Representation of Surface Geometry
    78(5)
    3 Motion And Geometry Descriptions
    83(42)
    3.1 Rigid-Body Kinematics
    84(2)
    3.2 Direction Cosines and Simple Rotations
    86(2)
    3.3 Euler Angles
    88(3)
    3.4 Euler Parameters
    91(4)
    3.5 Velocity and Acceleration Equations
    95(2)
    3.6 Generalized Coordinates
    97(3)
    3.7 Kinematic Singularities
    100(2)
    3.8 Euler Angles and Track Geometry
    102(5)
    3.9 Angle Representation of the Curve Geometry
    107(1)
    3.10 Euler Angles as Field Variables
    108(3)
    3.11 Euler-Angle Description of the Track Geometry
    111(3)
    3.12 Geometric Motion Constraints
    114(5)
    3.13 Trajectory Coordinates
    119(6)
    4 Railroad Geometry
    125(50)
    4.1 Wheel Surface Geometry
    126(6)
    4.2 Wheel Curvatures and Global Vectors
    132(3)
    4.3 Semi-analytical Approach for Rail Geometry
    135(7)
    4.4 ANCF Rail Geometry
    142(3)
    4.5 ANCF Interpolation of Rail Geometry
    145(1)
    4.6 ANCF Computation of Tangents and Normal
    146(2)
    4.7 Track Geometry Equations
    148(4)
    4.8 Numerical Representation of Track Geometry
    152(3)
    4.9 Track Data
    155(7)
    4.10 Irregularities and Measured Track Data
    162(7)
    4.11 Comparison of the Semi-Analytical and ANCF Approaches
    169(6)
    5 Contact Problem
    175(50)
    5.1 Wheel/Rail Contact Mechanism
    177(6)
    5.2 Constraint Contact Formulation (CCF)
    183(1)
    5.3 Elastic Contact Formulation (ECF)
    184(3)
    5.4 Normal Contact Forces
    187(1)
    5.5 Contact Surface Geometry
    188(6)
    5.6 Contact Ellipse and Normal Contact Force
    194(5)
    5.7 Creepage Definitions
    199(4)
    5.8 Creep Force Formulations
    203(10)
    5.9 Creep Force and Wheel/Rail Contact Formulations
    213(6)
    5.10 Maglev Forces
    219(6)
    6 Equations Of Motion
    225(66)
    6.1 Newtonian and Lagrangian Approaches
    226(1)
    6.2 Virtual Work Principle and Constrained Dynamics
    227(5)
    6.3 Summary of Rigid-Body Kinematics
    232(3)
    6.4 Inertia Forces
    235(4)
    6.5 Applied Forces
    239(2)
    6.6 Newton--Euler Equations
    241(3)
    6.7 Augmented Formulation and Embedding Technique
    244(10)
    6.8 Wheel/Rail Constraint Contact Forces
    254(5)
    6.9 Wheel/Rail Elastic Contact Forces
    259(2)
    6.10 Other Force Elements
    261(7)
    6.11 Trajectory Coordinates
    268(6)
    6.12 Longitudinal Train Dynamics (LTD)
    274(6)
    6.13 Hunting Stability
    280(8)
    6.14 MBS Modeling of Electromechanical Systems
    288(3)
    7 Pantograph/Catenary Systems
    291(38)
    7.1 Pantograph/Catenary Design
    292(6)
    7.2 ANCF Catenary Kinematic Equations
    298(6)
    7.3 Catenary Inertia and Elastic Forces
    304(2)
    7.4 Catenary Equations of Motion
    306(2)
    7.5 Pantograph/Catenary Contact Frame
    308(2)
    7.6 Constraint Contact Formulation (CCF)
    310(4)
    7.7 Elastic Contact Formulation (ECF)
    314(3)
    7.8 Pantograph/Catenary Equations and MBS Algorithms
    317(4)
    7.9 Pantograph/Catenary Contact Force Control
    321(1)
    7.10 Aerodynamic Forces
    322(2)
    7.11 Pantograph/Catenary Wear
    324(5)
    Appendix Contact Equations and Elliptical Integrals
    329(6)
    A.1 Derivation of the Contact Equations
    329(3)
    A.2 Elliptical Integrals
    332(3)
    Bibliography 335(20)
    Index 355
    AHMED A. SHABANA is University Distinguished Professor and the Richard and Loan Hill Professor of Engineering at the University of Illinois at Chicago, United States. He is a Fellow of the American Society of Mechanical Engineers (ASME), a Fellow of the Society of Automotive Engineering (SAE International), and the author of texts in the areas of dynamics and vibration.