Atnaujinkite slapukų nuostatas

El. knyga: Mathematical Methods and Physical Insights: An Integrated Approach

(Occidental College, Los Angeles)
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Jun-2022
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009293426
  • Formatas: PDF+DRM
  • Išleidimo metai: 16-Jun-2022
  • Leidėjas: Cambridge University Press
  • Kalba: eng
  • ISBN-13: 9781009293426

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Mathematics instruction is often more effective when presented in a physical context. Schramm uses this insight to help develop students' physical intuition as he guides them through the mathematical methods required to study upper-level physics. Based on the undergraduate Math Methods course he has taught for many years at Occidental College, the text encourages a symbiosis through which the physics illuminates the math, which in turn informs the physics. Appropriate for both classroom and self-study use, the text begins with a review of useful techniques to ensure students are comfortable with prerequisite material. It then moves on to cover vector fields, analytic functions, linear algebra, function spaces, and differential equations. Written in an informal and engaging style, it also includes short supplementary digressions ('By the Ways') as optional boxes showcasing directions in which the math or physics may be explored further. Extensive problems are included throughout, many taking advantage ofMathematica, to test and deepen comprehension"--

Recenzijos

'Schramm's Mathematical Methods and Physical Insights is a very welcome new textbook in the area of pedagogical mathematical physics. The book contains numerous insightful and helpful examples from classical and modern physics, as well as unusual and interesting applications of the presented mathematical concepts within and beyond physics. I find the 'BTW' inserts, and the lively, unpretentious style of the book both exciting and entertaining. The material discussed in Schramm's textbook covers entirely the scope of our three-trimester-long Mathematical Methods offering, and additionally provides useful background material to 'even out' the often inhomogeneous preparation of students in these classes; I will definitely consider adopting this textbook for my next offerings of Mathematical Methods for Physics here at the University of California, Santa Cruz.' Professor Stefano Profumo, University of California, Santa Cruz 'As the title suggests, Schramm's book distinguishes itself from traditional mathematical methods texts in its thematic approach that builds from unit to unit, using rich examples from physical systems that elucidate each topic.  A must-read for physicists wanting to expand their mathematical toolkit as well as for mathematicians hoping to gain new insights from the physical world.' Professor Jason Detwiler, University of Washington 'For students taking physics courses, one of the difficulties is how to apply appropriate mathematical skills in problem solving (e.g., using integration to find the electric field produced by a continuous charge distribution). This book introduces commonly used mathematical skills from the perspective of a physicist. Focusing on the topics in upper-level physics courses, it provides the mathematical skills for solving problems in each topic. The book is easy to read, and the problems at the end of each chapter offer plenty of exercises for students. The book is a valuable resource for undergraduate students taking upper-level physics courses, and instructors teaching such courses. It could also be a useful reference for graduate students.' Professor Hong Lin, Bates College 'Physics and engineering students often struggle with mathematics texts that present the material in an abstract fashion, disconnected from practical applications. Schramm's text represents a refreshing and much needed change. Providing context and intuition throughout, with many worked examples, and in engaging prose, it does more than just explain mathematical methods; it infuses them with meaning and relevance.' Dr. Jochen Rau, RheinMain University of Applied Sciences, Germany

Daugiau informacijos

This upper-level undergraduate text's unique approach enables students to develop both physical insight and mathematical intuition.
List of BTWs
xiv
Preface xvii
Part I Things You Just Gotta' Know
1 Prelude: Symbiosis
3(3)
2 Coordinating Coordinates
6(12)
2.1 Position-Dependent Basis Vectors
6(3)
2.2 Scale Factors and Jacobians
9(9)
Problems
15(3)
3 Complex Numbers
18(10)
3.1 Representations
18(2)
3.2 Euler's Formula and Trigonometry
20(8)
Problems
25(3)
4 Index Algebra
28(14)
4.1 Contraction, Dummy Indices, and All That
28(2)
4.2 Two Special Tensors
30(3)
4.3 Common Operations and Manipulations
33(4)
4.4 The Moment of Inertia Tensor
37(5)
Problems
39(3)
5 Brandishing Binomials
42(9)
5.1 The Binomial Theorem
42(4)
5.2 Beyond Binomials
46(5)
Problems
48(3)
6 Infinite Series
51(22)
6.1 Tests of Convergence
52(6)
6.2 Power Series
58(2)
6.3 Taylor Series
60(13)
Problems
66(7)
7 Interlude: Orbits in a Central Potential
73(7)
7.1 The Runge-Lenz Vector
73(2)
7.2 Orbits in the Complex Plane
75(1)
7.3 The Anomalies: True, Mean, and Eccentric
76(4)
Problems
78(2)
8 Ten Integration Techniques and Tricks
80(25)
8.1 Integration by Parts
80(1)
8.2 Change of Variables
81(2)
8.3 Even/Odd
83(3)
8.4 Products and Powers of Sine & Cosine
86(2)
8.5 Axial and Spherical Symmetry
88(1)
8.6 Differentiation with Respect to a Parameter
89(1)
8.7 Gaussian Integrals
90(2)
8.8 Completing the Square
92(2)
8.9 Expansion of the Integrand
94(2)
8.10 Partial Fractions
96(9)
Problems
99(6)
9 The Dirac Delta Function
105(12)
9.1 The Infinite Spike
105(2)
9.2 Properties of the Delta Function
107(10)
Problems
114(3)
10 Coda: Statistical Mechanics
117(12)
10.1 The Partition Function
117(3)
10.2 The Chemical Potential
120(2)
10.3 The Ideal Boson Gas
122(7)
Problems
125(4)
Part II The Calculus of Vector Fields
11 Prelude: Visualizing Vector Fields
129(4)
Problems
132(1)
12 Grad, Div, and Curl
133(22)
12.1 The Del Operator
133(5)
12.2 V and Vector Identities
138(3)
12.3 Different Coordinate Systems
141(4)
12.4 Understanding V2, V-, and Vx
145(7)
Problems
152(3)
13 Interlude: Irrotational and Incompressible
155(4)
Problems
158(1)
14 Integrating Scalar and Vector Fields
159(38)
14.1 Line Integrals
159(5)
14.2 Surface Integrals
164(6)
14.3 Circulation
170(12)
14.4 Flux
182(11)
Problems
193(4)
15 The Theorems of Gauss and Stokes
197(21)
15.1 The Divergence Theorem
197(6)
15.2 Stokes' Theorem
203(7)
15.3 The Fundamental Theorem of Calculus --- Revisited
210(2)
15.4 The Helmholtz Theorem
212(2)
Problems
214(4)
16 Mostly Maxwell
218(10)
16.1 Integrating Maxwell
218(4)
16.2 From Integrals to Derivatives
222(2)
16.3 The Potentials
224(2)
Problems
226(2)
17 Coda: Simply Connected Regions
228(11)
17.1 No Holes Barred?
229(1)
17.2 A Real Physical Effect
230(2)
17.3 Single-Valued
232(3)
Problems
235(4)
Part III Calculus in the Complex Plane
18 Prelude: Path Independence in the Complex Plane
239(9)
18.1 Analytic Functions
239(4)
18.2 Cauchy's Integral Formula
243(2)
Problems
245(3)
19 Series, Singularities, and Branches
248(21)
19.1 Taylor Series and Analytic Continuation
248(2)
19.2 Laurent Series
250(4)
19.3 Multivalued Functions
254(7)
19.4 The Complex Logarithm
261(4)
Problems
265(4)
20 Interlude: Conformal Mapping
269(18)
20.1 Visualizing Maps
269(9)
20.2 The Complex Potential
278(7)
Problems
285(2)
21 The Calculus of Residues
287(28)
21.1 The Residue Theorem
287(6)
21.2 Integrating Around a Circle
293(2)
21.3 Integrals Along the Real Axis
295(6)
21.4 Integration with Branch Cuts
301(2)
21.5 Integrals with Poles on the Contour
303(4)
21.6 Series Sums with Residues
307(4)
Problems
311(4)
22 Coda: Analyticity and Causality
315(10)
22.1 Acting on Impulse
315(3)
22.2 Waves on a String
318(2)
22.3 The Klein-Gordon Propagator
320(2)
Problems
322(3)
Part IV Linear Algebra
23 Prelude: Superposition
325(3)
Problems
327(1)
24 Vector Space
328(12)
24.1 Vector Essentials
328(2)
24.2 Basis Basics
330(6)
24.3 Kets and Reps
336(3)
Problems
339(1)
25 The Inner Product
340(28)
25.1 The Adjoint
340(5)
25.2 The Schwarz Inequality
345(3)
25.3 Orthonormality
348(5)
25.4 Building a Better Basis: Gram-Schmidt
353(3)
25.5 Completeness
356(6)
25.6 Matrix Representation of Operators
362(2)
Problems
364(4)
26 Interlude: Rotations
368(37)
26.1 Active and Passive Transformations
368(5)
26.2 What Makes a Rotation a Rotation?
373(8)
26.3 Improper Orthogonal Matrices: Reflections
381(4)
26.4 Rotations in R3
385(6)
26.5 Rotating Operators: Similarity Transformations
391(4)
26.6 Generating Rotations
395(5)
Problems
400(5)
27 The Eigenvalue Problem
405(32)
27.1 Solving the Eigenvalue Equation
406(6)
27.2 Normal Matrices
412(7)
27.3 Diagonalization
419(10)
27.4 The Generalized Eigenvalue Problem
429(1)
Problems
430(7)
28 Coda: Normal Modes
437(20)
28.1 Decoupling Oscillators
437(6)
28.2 Higher Dimensions
443(8)
Problems
451(6)
Entr'acte: Tensors
29 Cartesian Tensors
457(16)
29.1 The Principle of Relativity
457(1)
29.2 Stress and Strain
458(2)
29.3 The Equivalence Class of Rotations
460(5)
29.4 Tensors and Pseudotensors
465(1)
29.5 Tensor Invariants and Invariant Tensors
466(3)
Problems
469(4)
30 Beyond Cartesian
473(30)
30.1 A Sheared System
473(2)
30.2 The Metric
475(2)
30.3 Upstairs, Downstairs
477(5)
30.4 Lorentz Tensors
482(2)
30.5 General Covariance
484(3)
30.6 Tensor Calculus
487(5)
30.7 Geodesies, Curvature, and Tangent Planes
492(3)
Problems
495(8)
Part V Orthogonal Functions
31 Prelude: 12 3... Infinity
503(5)
31.1 The Continuum Limit
503(2)
31.2 An Inner Product of Functions
505(2)
Problems
507(1)
32 Eponymous Polynomials
508(15)
32.1 Legendre Polynomials
508(3)
32.2 Laguerre and Hermite Polynomials
511(4)
32.3 Generating Functions
515(4)
Problems
519(4)
33 Fourier Series
523(14)
33.1 A Basis of Sines and Cosines
523(3)
33.2 Examples and Applications
526(4)
33.3 Even and Odd Extensions
530(5)
Problems
535(2)
34 Convergence and Completeness
537(13)
34.1 Pointwise and Uniform Convergence
537(6)
34.2 Parseval's Theorem
543(5)
Problems
548(2)
35 Interlude: Beyond the Straight and Narrow
550(19)
35.1 Fourier Series on a Rectangular Domain
550(2)
35.2 Expanding on a Disk
552(3)
35.3 On a Sphere: The ym's
555(9)
35.4 From Shell to Ball
564(2)
Problems
566(3)
36 Fourier Transforms
569(35)
36.1 From Fourier Sum to Fourier Integral
569(5)
36.2 Physical Insights
574(6)
36.3 Complementary Spaces
580(7)
36.4 A Basis of Plane Waves
587(2)
36.5 Convolution
589(5)
36.6 Laplace Transforms
594(4)
Problems
598(6)
37 Coda: Of Time Intervals and Frequency Bands
604(11)
37.1 Sampling and Interpolation
605(4)
37.2 Aliasing
609(2)
Problems
611(4)
Part VI Differential Equations
38 Prelude: First Order First
615(8)
Problems
621(2)
39 Second-Order ODEs
623(22)
39.1 Constant Coefficients
623(2)
39.2 The Wronskian
625(5)
39.3 Series Solutions
630(6)
39.4 Legendre and Hermite, Re-revisited
636(5)
Problems
641(4)
40 Interlude: The Sturm--Liouville Eigenvalue Problem
645(18)
40.1 Whence Orthogonality?
645(1)
40.2 The Sturm--Liouville Operator
646(6)
40.3 Beyond Fourier
652(5)
Problems
657(6)
41 Partial Differential Equations
663(31)
41.1 Separating Space and Time
665(5)
41.2 The Helmholtz Equation
670(5)
41.3 Boundary Value Problems
675(8)
41.4 The Drums
683(5)
Problems
688(6)
42 Green's Functions
694(27)
42.1 A Unit Source
694(9)
42.2 The Eigenfunction Expansion
703(6)
42.3 Going Green in Space and Time
709(3)
42.4 Green's Functions and Fourier Transforms
712(5)
Problems
717(4)
43 Coda: Quantum Scattering
721(8)
43.1 The Born Approximation
721(4)
43.2 The Method of Partial Waves
725(2)
Problems
727(2)
Appendix A Curvilinear Coordinates 729(4)
Appendix B Rotations in R3 733(13)
Appendix C The Bessel Family of Functions 746(11)
References 757(2)
Index 759
Alec J. Schramm is a professor of physics at Occidental College, Los Angeles. In addition to conducting research in nuclear physics, mathematical physics, and particle phenomenology, he teaches at all levels of the undergraduate curriculum, from courses for non-majors through general relativity and relativistic quantum mechanics. After completing his Ph.D., he lectured at Duke University and was a KITP Scholar at the Kavli Institute for Theoretical Physics at UC Santa Barbara. He is regularly nominated for awards for his physics teaching and clear exposition of complex concepts.