|
|
xiv | |
Preface |
|
xvii | |
|
Part I Things You Just Gotta' Know |
|
|
|
|
3 | (3) |
|
2 Coordinating Coordinates |
|
|
6 | (12) |
|
2.1 Position-Dependent Basis Vectors |
|
|
6 | (3) |
|
2.2 Scale Factors and Jacobians |
|
|
9 | (9) |
|
|
15 | (3) |
|
|
18 | (10) |
|
|
18 | (2) |
|
3.2 Euler's Formula and Trigonometry |
|
|
20 | (8) |
|
|
25 | (3) |
|
|
28 | (14) |
|
4.1 Contraction, Dummy Indices, and All That |
|
|
28 | (2) |
|
|
30 | (3) |
|
4.3 Common Operations and Manipulations |
|
|
33 | (4) |
|
4.4 The Moment of Inertia Tensor |
|
|
37 | (5) |
|
|
39 | (3) |
|
|
42 | (9) |
|
|
42 | (4) |
|
|
46 | (5) |
|
|
48 | (3) |
|
|
51 | (22) |
|
|
52 | (6) |
|
|
58 | (2) |
|
|
60 | (13) |
|
|
66 | (7) |
|
7 Interlude: Orbits in a Central Potential |
|
|
73 | (7) |
|
7.1 The Runge-Lenz Vector |
|
|
73 | (2) |
|
7.2 Orbits in the Complex Plane |
|
|
75 | (1) |
|
7.3 The Anomalies: True, Mean, and Eccentric |
|
|
76 | (4) |
|
|
78 | (2) |
|
8 Ten Integration Techniques and Tricks |
|
|
80 | (25) |
|
|
80 | (1) |
|
|
81 | (2) |
|
|
83 | (3) |
|
8.4 Products and Powers of Sine & Cosine |
|
|
86 | (2) |
|
8.5 Axial and Spherical Symmetry |
|
|
88 | (1) |
|
8.6 Differentiation with Respect to a Parameter |
|
|
89 | (1) |
|
|
90 | (2) |
|
8.8 Completing the Square |
|
|
92 | (2) |
|
8.9 Expansion of the Integrand |
|
|
94 | (2) |
|
|
96 | (9) |
|
|
99 | (6) |
|
9 The Dirac Delta Function |
|
|
105 | (12) |
|
|
105 | (2) |
|
9.2 Properties of the Delta Function |
|
|
107 | (10) |
|
|
114 | (3) |
|
10 Coda: Statistical Mechanics |
|
|
117 | (12) |
|
10.1 The Partition Function |
|
|
117 | (3) |
|
10.2 The Chemical Potential |
|
|
120 | (2) |
|
|
122 | (7) |
|
|
125 | (4) |
|
Part II The Calculus of Vector Fields |
|
|
|
11 Prelude: Visualizing Vector Fields |
|
|
129 | (4) |
|
|
132 | (1) |
|
|
133 | (22) |
|
|
133 | (5) |
|
12.2 V and Vector Identities |
|
|
138 | (3) |
|
12.3 Different Coordinate Systems |
|
|
141 | (4) |
|
12.4 Understanding V2, V-, and Vx |
|
|
145 | (7) |
|
|
152 | (3) |
|
13 Interlude: Irrotational and Incompressible |
|
|
155 | (4) |
|
|
158 | (1) |
|
14 Integrating Scalar and Vector Fields |
|
|
159 | (38) |
|
|
159 | (5) |
|
|
164 | (6) |
|
|
170 | (12) |
|
|
182 | (11) |
|
|
193 | (4) |
|
15 The Theorems of Gauss and Stokes |
|
|
197 | (21) |
|
15.1 The Divergence Theorem |
|
|
197 | (6) |
|
|
203 | (7) |
|
15.3 The Fundamental Theorem of Calculus --- Revisited |
|
|
210 | (2) |
|
15.4 The Helmholtz Theorem |
|
|
212 | (2) |
|
|
214 | (4) |
|
|
218 | (10) |
|
|
218 | (4) |
|
16.2 From Integrals to Derivatives |
|
|
222 | (2) |
|
|
224 | (2) |
|
|
226 | (2) |
|
17 Coda: Simply Connected Regions |
|
|
228 | (11) |
|
|
229 | (1) |
|
17.2 A Real Physical Effect |
|
|
230 | (2) |
|
|
232 | (3) |
|
|
235 | (4) |
|
Part III Calculus in the Complex Plane |
|
|
|
18 Prelude: Path Independence in the Complex Plane |
|
|
239 | (9) |
|
|
239 | (4) |
|
18.2 Cauchy's Integral Formula |
|
|
243 | (2) |
|
|
245 | (3) |
|
19 Series, Singularities, and Branches |
|
|
248 | (21) |
|
19.1 Taylor Series and Analytic Continuation |
|
|
248 | (2) |
|
|
250 | (4) |
|
19.3 Multivalued Functions |
|
|
254 | (7) |
|
19.4 The Complex Logarithm |
|
|
261 | (4) |
|
|
265 | (4) |
|
20 Interlude: Conformal Mapping |
|
|
269 | (18) |
|
|
269 | (9) |
|
20.2 The Complex Potential |
|
|
278 | (7) |
|
|
285 | (2) |
|
21 The Calculus of Residues |
|
|
287 | (28) |
|
|
287 | (6) |
|
21.2 Integrating Around a Circle |
|
|
293 | (2) |
|
21.3 Integrals Along the Real Axis |
|
|
295 | (6) |
|
21.4 Integration with Branch Cuts |
|
|
301 | (2) |
|
21.5 Integrals with Poles on the Contour |
|
|
303 | (4) |
|
21.6 Series Sums with Residues |
|
|
307 | (4) |
|
|
311 | (4) |
|
22 Coda: Analyticity and Causality |
|
|
315 | (10) |
|
|
315 | (3) |
|
|
318 | (2) |
|
22.3 The Klein-Gordon Propagator |
|
|
320 | (2) |
|
|
322 | (3) |
|
|
|
23 Prelude: Superposition |
|
|
325 | (3) |
|
|
327 | (1) |
|
|
328 | (12) |
|
|
328 | (2) |
|
|
330 | (6) |
|
|
336 | (3) |
|
|
339 | (1) |
|
|
340 | (28) |
|
|
340 | (5) |
|
25.2 The Schwarz Inequality |
|
|
345 | (3) |
|
|
348 | (5) |
|
25.4 Building a Better Basis: Gram-Schmidt |
|
|
353 | (3) |
|
|
356 | (6) |
|
25.6 Matrix Representation of Operators |
|
|
362 | (2) |
|
|
364 | (4) |
|
|
368 | (37) |
|
26.1 Active and Passive Transformations |
|
|
368 | (5) |
|
26.2 What Makes a Rotation a Rotation? |
|
|
373 | (8) |
|
26.3 Improper Orthogonal Matrices: Reflections |
|
|
381 | (4) |
|
|
385 | (6) |
|
26.5 Rotating Operators: Similarity Transformations |
|
|
391 | (4) |
|
26.6 Generating Rotations |
|
|
395 | (5) |
|
|
400 | (5) |
|
27 The Eigenvalue Problem |
|
|
405 | (32) |
|
27.1 Solving the Eigenvalue Equation |
|
|
406 | (6) |
|
|
412 | (7) |
|
|
419 | (10) |
|
27.4 The Generalized Eigenvalue Problem |
|
|
429 | (1) |
|
|
430 | (7) |
|
|
437 | (20) |
|
28.1 Decoupling Oscillators |
|
|
437 | (6) |
|
|
443 | (8) |
|
|
451 | (6) |
|
|
|
|
457 | (16) |
|
29.1 The Principle of Relativity |
|
|
457 | (1) |
|
|
458 | (2) |
|
29.3 The Equivalence Class of Rotations |
|
|
460 | (5) |
|
29.4 Tensors and Pseudotensors |
|
|
465 | (1) |
|
29.5 Tensor Invariants and Invariant Tensors |
|
|
466 | (3) |
|
|
469 | (4) |
|
|
473 | (30) |
|
|
473 | (2) |
|
|
475 | (2) |
|
30.3 Upstairs, Downstairs |
|
|
477 | (5) |
|
|
482 | (2) |
|
|
484 | (3) |
|
|
487 | (5) |
|
30.7 Geodesies, Curvature, and Tangent Planes |
|
|
492 | (3) |
|
|
495 | (8) |
|
Part V Orthogonal Functions |
|
|
|
31 Prelude: 12 3... Infinity |
|
|
503 | (5) |
|
|
503 | (2) |
|
31.2 An Inner Product of Functions |
|
|
505 | (2) |
|
|
507 | (1) |
|
|
508 | (15) |
|
32.1 Legendre Polynomials |
|
|
508 | (3) |
|
32.2 Laguerre and Hermite Polynomials |
|
|
511 | (4) |
|
32.3 Generating Functions |
|
|
515 | (4) |
|
|
519 | (4) |
|
|
523 | (14) |
|
33.1 A Basis of Sines and Cosines |
|
|
523 | (3) |
|
33.2 Examples and Applications |
|
|
526 | (4) |
|
33.3 Even and Odd Extensions |
|
|
530 | (5) |
|
|
535 | (2) |
|
34 Convergence and Completeness |
|
|
537 | (13) |
|
34.1 Pointwise and Uniform Convergence |
|
|
537 | (6) |
|
|
543 | (5) |
|
|
548 | (2) |
|
35 Interlude: Beyond the Straight and Narrow |
|
|
550 | (19) |
|
35.1 Fourier Series on a Rectangular Domain |
|
|
550 | (2) |
|
|
552 | (3) |
|
35.3 On a Sphere: The ym's |
|
|
555 | (9) |
|
|
564 | (2) |
|
|
566 | (3) |
|
|
569 | (35) |
|
36.1 From Fourier Sum to Fourier Integral |
|
|
569 | (5) |
|
|
574 | (6) |
|
36.3 Complementary Spaces |
|
|
580 | (7) |
|
36.4 A Basis of Plane Waves |
|
|
587 | (2) |
|
|
589 | (5) |
|
|
594 | (4) |
|
|
598 | (6) |
|
37 Coda: Of Time Intervals and Frequency Bands |
|
|
604 | (11) |
|
37.1 Sampling and Interpolation |
|
|
605 | (4) |
|
|
609 | (2) |
|
|
611 | (4) |
|
Part VI Differential Equations |
|
|
|
38 Prelude: First Order First |
|
|
615 | (8) |
|
|
621 | (2) |
|
|
623 | (22) |
|
39.1 Constant Coefficients |
|
|
623 | (2) |
|
|
625 | (5) |
|
|
630 | (6) |
|
39.4 Legendre and Hermite, Re-revisited |
|
|
636 | (5) |
|
|
641 | (4) |
|
40 Interlude: The Sturm--Liouville Eigenvalue Problem |
|
|
645 | (18) |
|
40.1 Whence Orthogonality? |
|
|
645 | (1) |
|
40.2 The Sturm--Liouville Operator |
|
|
646 | (6) |
|
|
652 | (5) |
|
|
657 | (6) |
|
41 Partial Differential Equations |
|
|
663 | (31) |
|
41.1 Separating Space and Time |
|
|
665 | (5) |
|
41.2 The Helmholtz Equation |
|
|
670 | (5) |
|
41.3 Boundary Value Problems |
|
|
675 | (8) |
|
|
683 | (5) |
|
|
688 | (6) |
|
|
694 | (27) |
|
|
694 | (9) |
|
42.2 The Eigenfunction Expansion |
|
|
703 | (6) |
|
42.3 Going Green in Space and Time |
|
|
709 | (3) |
|
42.4 Green's Functions and Fourier Transforms |
|
|
712 | (5) |
|
|
717 | (4) |
|
43 Coda: Quantum Scattering |
|
|
721 | (8) |
|
43.1 The Born Approximation |
|
|
721 | (4) |
|
43.2 The Method of Partial Waves |
|
|
725 | (2) |
|
|
727 | (2) |
Appendix A Curvilinear Coordinates |
|
729 | (4) |
Appendix B Rotations in R3 |
|
733 | (13) |
Appendix C The Bessel Family of Functions |
|
746 | (11) |
References |
|
757 | (2) |
Index |
|
759 | |