Atnaujinkite slapukų nuostatas

El. knyga: Mathematical Reflections: In a Room with Many Mirrors

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

In a relaxed, informal style, this book conveys the joy of mathematical discovery and insight, helping readers to see mathematics as an accessible world of thought. Explores spirals, fractals, Fibonacci numbers, Pascal's Triangle and paper folding, and more.

A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.

Daugiau informacijos

Springer Book Archives
1 Going Down the Drain.- 1.1 Constructions.- 1.2 Cobwebs.- 1.3
Consolidation.- 1.4 Fibonacci Strikes.- 1.5 Dénouement.- 2 A Far Nicer
Arithmetic.- 2.1 General Background: What You Already Know.- 2.2 Some Special
Moduli: Getting Ready for the Fun.- 2.3 Arithmetic mod p: Some Beautiful
Mathematics.- 2.4 Arithmetic mod Non-primes: The Same But Different.- 2.5
Primes, Codes, and Security.- 2.6 Casting Out 9s and 11s: Tricks of the
Trade.- 3 Fibonacci and Lucas Numbers.- 3.1 A Number Trick.- 3.2 The
Explanation Begins.- 3.3 Divisibility Properties.- 3.4 The Number Trick
Finally Explained.- 3.5 More About Divisibility.- 3.6 A Little Geometry!.- 4
Paper-Folding and Number Theory.- 4.1 Introduction: What You Can Do Withand
WithoutEuclidean Tools.- 4.2 Going Beyond Euclid: Folding 2-Period Regular
Polygons.- 4.3 Folding Numbers.- 4.4 Some Mathematical Tidbits.- 4.5 General
Folding Procedures.- 4.6 The Quasi-Order Theorem.- 4.7 Appendix: A Little
Solid Geometry.- 5 Quilts and Other Real-World Decorative Geometry.- 5.1
Quilts.- 5.2 Variations.- 5.3 Round and Round.- 5.4 Up the Wall.- 6 Pascal,
Euler, Triangles, Windmills.- 6.1 Introduction: A Chance to Experiment.- 6.2
The Binomial Theorem.- 6.3 The Pascal Triangle and Windmill.- 6.4 The Pascal
Flower and the Generalized Star of David.- 6.5 Eulerian Numbers and Weighted
Sums.- 6.6 Even Deeper Mysteries.- 7 Hair and Beyond.- 7.1 A Problem with
Pigeons, and Related Ideas.- 7.2 The Biggest Number.- 7.3 The Big Infinity.-
7.4 Other Sets of Cardinality ?0.- 7.5 Schröder and Bernstein.- 7.6 Cardinal
Arithmetic.- 7.7 Even More Infinities?.- 8 An Introduction to the Mathematics
of Fractal Geometry.- 8.1 Introduction to the Introduction: Whats Different
About Our Approach.- 8.2 Intuitive Notion of Self-Similarity.- 8.3The lént
Map and the Logistic Map.- 8.4 Some More Sophisticated Material.- An
Introduction to the Mathematics of Fractal Geometry.- 8.1 Introduction to the
Introduction: Whats Different About Our Approach.- 8.2 Intuitive Notion of
Self-Similarity.- 8.3 The tent Map and and the Logistic Map.- 8.4 Some more
Sophisticated Material.- 9 Some of Our Own Reflections.- 9.1 General
Principles.- 9.2 Specific Principles.- 9.3 Appendix: Principles of
Mathematical Pedagogy.