Atnaujinkite slapukų nuostatas

El. knyga: Mathematical and Statistical Methods in Food Science and Technology

Edited by (UniFMU - Centro Universitįrio das Faculdades Metropolitanas Unidas, Brazil), Edited by (Universidad de la Repśblica, Uruguay)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Food scientists and engineers explain to their non-statistician colleagues how to use some recently developed mathematical modeling techniques to develop and evaluate food products. Their topics include a case study of optimizing the enzyme-aided extraction of polyphenols from unripe apples by response surface methodology, principal component regression and partial least squares regression, statistical approaches to developing and validating microbiological analytic methods, infrared spectroscopy detection coupled with chemometrics to characterize food-borne pathogens at a subspecies level, and translating randomly fluctuating quality control records into the probabilities of future mishaps. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Mathematical and Statistical Approaches in Food Science and Technology offers an accessible guide to applying statistical and mathematical technologies in the food science field whilst also addressing the theoretical foundations. Using clear examples and case-studies by way of practical illustration, the book is more than just a theoretical guide for non-statisticians, and may therefore be used by scientists, students and food industry professionals at different levels and with varying degrees of statistical skill.
About the editors xi
List of contributors
xiii
Acknowledgements xvii
Section 1
1(54)
1 The use and importance of design of experiments (DOE) in process modelling in food science and technology
3(16)
Daniel Granato
Veronica Maria de Araujo Calado
2 The use of correlation, association and regression to analyse processes and products
19(12)
Daniel Cozzolino
3 Case study: Optimization of enzyme-aided extraction of polyphenols from unripe apples by response surface methodology
31(12)
Hu-Zhe Zheng
Shin-Kyo Chung
4 Case study: Statistical analysis of eurycomanone yield using a full factorial design
43(12)
Azila Abdul-Aziz
Harisun Yaakob
Ramlan Aziz
Roshanida Abdul Rahman
Sulaiman Ngadiran
Mohd Faizal Muhammad
Noor Hafiza Harun
Wan Mastura Wan Zamri
Ernie Surianiy Rosly
Section 2
55(176)
5 Applications of principal component analysis (PCA) in food science and technology
57(30)
Aurea Grane
Agnieszka Jach
6 Multiple factor analysis: Presentation of the method using sensory data
87(16)
Jerome Pages
Francois Husson
7 Cluster analysis: Application in food science and technology
103(18)
Gaston Ares
8 Principal component regression (PCR) and partial least squares regression (PLSR)
121(22)
Rolf Ergon
9 Multiway methods in food science
143(32)
Asmund Rinnan
Jose Manuel Amigo
Thomas Skov
10 Multidimensional scaling (MDS)
175(12)
Eva Derndorfer
Andreas Baierl
11 Application of multivariate statistical methods during new product development - Case study: Application of principal component analysis and hierarchical cluster analysis on consumer liking data of orange juices
187(14)
Paula Varela
12 Multivariate image analysis
201(18)
Marco S. Reis
13 Case Study: Quality control of Camellia sinensis and Ilex paraguariensis teas marketed in Brazil based on total phenolics, flavonoids and free-radical scavenging activity using chemometrics
219(12)
Debora Cristiane Bassani
Domingos Savio Nunes
Daniel Granato
Section 3
231(188)
14 Statistical approaches to develop and validate microbiological analytical methods
233(16)
Anthony D. Hitchins
15 Statistical approaches to the analysis of microbiological data
249(36)
Basil Jarvis
16 Statistical modelling of anthropometric characteristics evaluated on nutritional status
285(18)
Zelimir Kurtanjek
Jasenka Gajdos Kljusuric
17 Effects of paediatric obesity: a multivariate analysis of laboratory parameters
303(18)
Tamas Ferenci
Levente Kovacs
18 Development and application of predictive microbiology models in foods
321(42)
Fernando Perez-Rodriguez
19 Statistical approaches for the design of sampling plans for microbiological monitoring of foods
363(22)
Ursula Andrea Gonzales-Barron
Vasco Augusto Pilao Cadavez
Francis Butler
20 Infrared spectroscopy detection coupled to chemometrics to characterize foodborne pathogens at a subspecies level
385(34)
Clara C. Sousa
Joao A. Lopes
Section 4
419(92)
21 Multivariate statistical quality control
421(10)
Jeffrey E. Jarrett
22 Application of neural-based algorithms as statistical tools for quality control of manufacturing processes
431(18)
Massimo Pacella
Quirico Semeraro
23 An integral approach to validation of analytical fingerprinting methods in combination with chemometric modelling for food quality assurance
449(22)
Grishja van der Veer
Saskia M. van Ruth
Jos A. Hageman
24 Translating randomly fluctuating QC records into the probabilities of future mishaps
471(20)
Micha Peleg
Mark D. Normand
Maria G. Corradini
25 Application of statistical approaches for analysing the reliability and maintainability of food production lines: a case study of mozzarella cheese
491(20)
Panagiotis H. Tsarouhas
Index 511
Dr Daniel Granato, Research Fellow, Department of Food Engineering, State University of Ponta Grossa, Paranį, Brazil.

Dr Gastón Ares, Assistant Professor, Department of Food Science and Technology, Facultad de Quķmica, Universidad de la Repśblica, Uruguay