Atnaujinkite slapukų nuostatas

El. knyga: Mathematics of Ramsey Theory

Edited by , Edited by
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 5
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642729058
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 5
  • Išleidimo metai: 06-Dec-2012
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783642729058

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.
Ramsey Theory Old and New.-
1. Ramsey Numbers.-
2. Transfinite Ramsey
Theory.-
3. Chromatic Number.-
4. Classical Theorems.-
5. Other Classical
Theorems.-
6. Structural Generalizations.-
7. Infinite Ramsey Theorem.-
8.
Unprovability Results.-
9. Non-Standard Applications.- I. Classics.- Problems
and Results on Graphs and Hypergraphs: Similarities and Differences.-
1.
Extremal Problems of Turan Type.-
2. Density Problems.-
3. Ramsey's Theorem.-
4. Ramsey-Turan Type Problems.-
5. Chromatic Numbers.- Note on Canonical
Partitions.- II. Numbers.- On Size Ramsey Number of Paths, Trees and
Circuits. II.-
1. Introduction.-
2. Proof of Theorem 1 - Part One.-
3. Proof
of Theorem 1 - Part Two.-
4. Proof of Theorem 2.-
5. Proof of Theorem 3.- On
the Computational Complexity of Ramsey-Type Problems.-
1. Introduction.-
2.
NP-Complete Ramsey Problems.-
3. Polynomial-Bounded Ramsey Problems.-
4.
Discussion.- Constructive Ramsey Bounds and Intersection Theorems for Sets.-
1. Introduction.-
2. Families of Sets with Prescribed Intersections.-
3. The
Proof of Theorem 2.3.-
4. The Proof of Theorem 1.1.- Ordinal Types in Ramsey
Theory and Well-Partial-Ordering Theory.-
1. Introduction.-
2. Sheaves.-
3.
Ramsey Systems.-
4. Well-Partial-Ordering.-
5. Erdos-Szekeres Theorem.-
6.
Ramsey Systems.-
7. Canonical Ramsey Theorem.- III. Structural Theory.-
Partite Construction and Ramsey Space Systems.-
1. Introduction.-
2.
Statement of Results.-
3. Partite Lemma.-
4. Partite Construction.-
5.
Applications.- Graham-Rothschild Parameter Sets.-
1. Introduction.-
2.
Parameter Sets and Parameter Words (Definition and Basic Examples).-
3.
Hales-Jewett's Theorem.-
4. Graham-Rothschild's Theorem.-
5. Infinite
Versions.-
6. Other Structures.- Shelah's Proof of the Hales-Jewett Theorem.-
IV. Noncombinatorial Methods.- Partitioning Topological Spaces.-
1.
Introduction.-
2. Partitioning Singletons.-
3. Partitioning Pairs.-
4. Open
Problems.- Topological Ramsey Theory.-
1. Introduction.-
2. Ramsey Spaces and
Ellentuck's Theorem.-
3. Finitary Consequences of Ellentuck Type Theorems.-
4. The Axiom of Choice and the Construction of Non-Ramsey Sets.-
5. Finite
Dimensional Analogues of Ellentuck Type Theorems.-
6. Canonical Partitions.-
Ergodic Theory and Configurations in Sets of Positive Density.-
1.
Introduction.-
2. Correspondence Between Subsets of ?2 and ?2-Actions.-
3.
Ergodic Averages for Subsets of ?2.-
4. First Application to Subsets of
Positive Density in ?2.-
5. Proof of Theorem A.-
6. A Recurrence Property of
?2-Actions.-
7. Proof of Theorem B.- V. Variations and Applications.- Topics
in Euclidean Ramsey Theory.-
1. Introduction.-
2. Preliminaries.-
3. Ramsey
Sets.-
4. Sphere-Ramsey Sets.-
5. Concluding Remarks.- On Pisier Type
Problems and Results (Combinatorial Applications to Number Theory).-
1.
Introduction.-
2. Multiplicative Bases and Szemeredi-Ruzsa Theorem.-
3.
Graphical Sequences and Examples of Their Use.-
4. Pisier Type Theorems.-
5.
Pisier Problem - Positive Results.-
6. Special Ramsey Graphs - the Partite
Construction.- Combinatorial Statements Independent of Arithmetic.-
1.
Introduction.-
2. Notation.-
3. Arithmetic.-
4. Conclusions.- Boolean
Complexity and Ramsey Theorems.-
1. General Remarks.-
2. An Example of a
Lower Bound to Formula Size Complexity.- Uncrowded Graphs.-
1. Graphs.-
2.
Hypergraphs.-
3. Heilbronn's Conjecture.- Author Index.