Atnaujinkite slapukų nuostatas

El. knyga: Matroid Theory and its Applications in Electric Network Theory and in Statics

  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 6
  • Išleidimo metai: 29-Jun-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662221433
  • Formatas: PDF+DRM
  • Serija: Algorithms and Combinatorics 6
  • Išleidimo metai: 29-Jun-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662221433

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

I. The topics of this book The concept of a matroid has been known for more than five decades. Whitney (1935) introduced it as a common generalization of graphs and matrices. In the last two decades, it has become clear how important the concept is, for the following reasons: (1) Combinatorics (or discrete mathematics) was considered by many to be a collection of interesting, sometimes deep, but mostly unrelated ideas. However, like other branches of mathematics, combinatorics also encompasses some gen­ eral tools that can be learned and then applied, to various problems. Matroid theory is one of these tools. (2) Within combinatorics, the relative importance of algorithms has in­ creased with the spread of computers. Classical analysis did not even consider problems where "only" a finite number of cases were to be studied. Now such problems are not only considered, but their complexity is often analyzed in con­ siderable detail. Some questions of this type (for example, the determination of when the so called "greedy" algorithm is optimal) cannot even be answered without matroidal tools.

Daugiau informacijos

Springer Book Archives
ONE.- 1 Basic concepts from graph theory.- 2 Applications.- 3 Planar
graphs and duality.- 4 Applications.- 5 The theorems of König and Menger.- 6
Applications.- TWO.- 7 Basic concepts in matroid theory.- 8 Applications.- 9
Algebraic and geometric representation of matroids.- 10 Applications.- 11 The
sum of matroids I.- 12 Applications.- 13 The sum of matroids II.- 14
Applications.- 15 Matroids induced by graphs.- 16 Applications.- 17 Some
recent results in matroid theory.- 18 Applications.- Appendix 1 Some
important results in chronological order.- Appendix 2 List of the Boxes.-
Appendix 3 List of the Algorithms.- Appendix 4 Solutions to the Exercises and
Problems.