Atnaujinkite slapukų nuostatas

Matter and Interactions, Volume 1: Modern Mechanics 4th ed. [Loose-leaf]

3.80/5 (25 ratings by Goodreads)
, (North Carolina State University)
  • Formatas: Loose-leaf, 544 pages, aukštis x plotis x storis: 277x213x20 mm, weight: 1066 g
  • Išleidimo metai: 31-Jul-2018
  • Leidėjas: Wiley
  • ISBN-10: 1119462096
  • ISBN-13: 9781119462095
Kitos knygos pagal šią temą:
  • Formatas: Loose-leaf, 544 pages, aukštis x plotis x storis: 277x213x20 mm, weight: 1066 g
  • Išleidimo metai: 31-Jul-2018
  • Leidėjas: Wiley
  • ISBN-10: 1119462096
  • ISBN-13: 9781119462095
Kitos knygos pagal šią temą:
Matter and Interactions offers a modern curriculum for introductory physics (calculus-based). It presents physics the way practicing physicists view their discipline while integrating 20th Century physics and computational physics. The text emphasizes the small number of fundamental principles that underlie the behavior of matter, and models that can explain and predict a wide variety of physical phenomena. Matter and Interactions will be available as a single volume hardcover text and also two paperback volumes.

Volume One includes chapters 1-12.
VOLUME I Modern Mechanics
Chapter 1 Interactions and Motion
1(44)
1.1 Kinds of Matter
1(3)
1.2 Detecting Interactions
4(2)
1.3 Newton's First Law of Motion
6(2)
1.4 Describing the 3D World: Vectors
8(9)
1.5 SI Units
17(1)
1.6 Speed and Velocity
18(2)
1.7 Predicting a New Position
20(4)
1.8 Momentum
24(3)
1.9 Using Momentum to Update Position
27(1)
1.10 Momentum at High Speeds
28(3)
1.11 Computational Modeling
31(2)
1.12 The Principle of Relativity
33(3)
1.13 *Updating Position at High Speed
36(9)
Summary
37(1)
Questions
38(1)
Problems
39(3)
Computational Problems
42(2)
Answers to Checkpoints
44(1)
Chapter 2 The Momentum Principle
45(43)
2.1 The Momentum Principle
45(5)
2.2 Large Forces and Short Times
50(5)
2.3 Predicting the Future
55(2)
2.4 Iterative Prediction: Constant Net Force
57(3)
2.5 Analytical Prediction: Constant Net Force
60(5)
2.6 Iterative Prediction: Varying Net Force
65(7)
2.7 Iterative Calculations on a Computer
72(3)
2.8 *Derivation: Special-Case Average Velocity
75(2)
2.9 *Relativistic Motion
77(2)
2.10 *Measurements and Units
79(9)
Summary
81(1)
Questions
81(1)
Problems
82(4)
Computational Problems
86(1)
Answers to Checkpoints
87(1)
Chapter 3 The Fundamental Interactions
88(42)
3.1 The Fundamental Interactions
88(1)
3.2 The Gravitational Force
89(4)
3.3 Approximate Gravitational Force Near the Earth's Surface
93(2)
3.4 Reciprocity
95(1)
3.5 Predicting Motion of Gravitationally Interacting Objects
96(4)
3.6 Gravitational Force in Computational Models
100(2)
3.7 The Electric Force
102(2)
3.8 The Strong Interaction
104(2)
3.9 The Weak Interaction
106(1)
3.10 Conservation of Momentum
107(3)
3.11 The Multiparticle Momentum Principle
110(3)
3.12 Collisions: Negligible External Forces
113(3)
3.13 Newton and Einstein
116(1)
3.14 Predicting the Future of Complex Systems
117(2)
3.15 Determinism
119(2)
3.16 Points and Spheres
121(1)
3.17 Measuring the Gravitational Constant G
122(8)
Summary
122(1)
Questions
123(1)
Problems
123(5)
Computational Problems
128(1)
Answers to Checkpoints
129(1)
Chapter 4 Contact Interactions
130(43)
4.1 Beyond Point Particles
130(1)
4.2 The Ball-Spring Model of a Solid
131(1)
4.3 Tension Forces
132(1)
4.4 Length of an Interatomic Bond
133(2)
4.5 The Stiffness of an Interatomic Bond
135(3)
4.6 Stress, Strain, and Young's Modulus
138(3)
4.7 Compression (Normal) Forces
141(1)
4.8 Friction
141(3)
4.9 Speed of Sound in a Solid and Interatomic Bond Stiffness
144(2)
4.10 Derivative Form of the Momentum Principle
146(2)
4.11 Analytical Solution: Spring-Mass System
148(4)
4.12 Analytical vs. Iterative Solutions
152(2)
4.13 Analytical Expression for Speed of Sound
154(2)
4.14 Contact Forces Due to Gases
156(4)
4.15 *Acceleration
160(1)
4.16 *A Vertical Spring-Mass System
161(1)
4.17 *General Solution for the Mass-Spring System
161(12)
Summary
163(1)
Questions
164(2)
Problems
166(4)
Computational Problems
170(2)
Answers to Checkpoints
172(1)
Chapter 5 Determining Forces from Motion
173(42)
5.1 Unknown Forces
173(1)
5.2 Identifying all Forces
173(1)
5.3 Determining Unknown Forces
174(2)
5.4 Uniform Motion
176(8)
5.5 Changing Momentum
184(1)
5.6 Force and Curving Motion
185(5)
5.7 Dp/Dt for Curving Motion
190(5)
5.8 Unknown Forces: Curving Motion
195(5)
5.9 Kinesthetic Sensations
200(2)
5.10 More Complex Problems
202(13)
Summary
205(1)
Questions
206(1)
Problems
206(7)
Computational Problems
213(1)
Answers to Checkpoints
214(1)
Chapter 6 The Energy Principle
215(69)
6.1 The Energy Principle
215(1)
6.2 Energy of a Single Particle
216(5)
6.3 Work: Mechanical Energy Transfer
221(6)
6.4 Work and Energy
227(4)
6.5 Change of Rest Energy
231(3)
6.6 Proof of the Energy Principle for a Particle
234(1)
6.7 Potential Energy in Multiparticle Systems
235(5)
6.8 Gravitational Potential Energy
240(9)
6.9 Electric Potential Energy
249(1)
6.10 Plotting Energy vs. Separation
250(5)
6.11 General Properties of Potential Energy
255(3)
6.12 The Mass of a Multiparticle System
258(5)
6.13 Reflection: Why Energy?
263(1)
6.14 Identifying Initial and Final States
264(4)
6.15 Energy in Computational Models
268(1)
6.16 *A Puzzle
269(1)
6.17 *Gradient of Potential Energy
270(1)
6.18 *Integrals and Antiderivatives
271(1)
6.19 *Approximation for Kinetic Energy
272(1)
6.20 *Finding the Expression for Particle Energy
273(1)
6.21 *Finding an Angle from the Dot Product
274(10)
Summary
274(1)
Questions
275(1)
Problems
276(6)
Computational Problems
282(1)
Answers to Checkpoints
283(1)
Chapter 7 Internal Energy
284(39)
7.1 Extended Objects
284(1)
7.2 Potential Energy of Macroscopic Springs
284(6)
7.3 Potential Energy of a Pair of Neutral Atoms
290(2)
7.4 Internal Energy
292(5)
7.5 Energy Transfer Due to a Temperature Difference
297(3)
7.6 Power: Energy per Unit Time
300(1)
7.7 Open and Closed Systems
300(2)
7.8 The Choice of System Affects Energy Accounting
302(2)
7.9 The Choice of Reference Frame Affects Energy Accounting
304(2)
7.10 Energy Dissipation
306(6)
7.11 Energy Dissipation in Computational Models
312(2)
7.12 *Resonance
314(9)
Summary
315(1)
Questions
316(1)
Problems
317(3)
Computational Problems
320(1)
Answers to Checkpoints
321(2)
Chapter 8 Energy Quantization
323(26)
8.1 Photons
323(1)
8.2 Electronic Energy Levels
324(10)
8.3 The Effect of Temperature
334(1)
8.4 Vibrational Energy Levels
335(3)
8.5 Rotational Energy Levels
338(1)
8.6 Other Energy Levels
339(1)
8.7 Comparison of Energy-Level Spacings
339(1)
8.8 *Random Emission Time
340(1)
8.9 *Case Study: How a Laser Works
340(2)
8.10 *Wavelength of Light
342(7)
Summary
343(1)
Questions
343(1)
Problems
344(2)
Computational Problems
346(2)
Answers to Checkpoints
348(1)
Chapter 9 Translational, Rotational, and Vibrational Energy
349(34)
9.1 Separation of Multiparticle System Energy
349(4)
9.2 Rotational Kinetic Energy
353(6)
9.3 Comparing Two Models of a System
359(9)
9.4 Modeling Friction in Detail
368(5)
9.5 *Derivation: Kinetic Energy of a Multiparticle System
373(1)
9.6 *Derivation: The Point Particle Energy Equation
374(9)
Summary
376(1)
Questions
376(1)
Problems
377(5)
Answers to Checkpoints
382(1)
Chapter 10 Collisions
383(33)
10.1 Collisions
383(1)
10.2 Elastic and Inelastic Collisions
384(2)
10.3 A Head-on Collision of Equal Masses
386(3)
10.4 Head-on Collisions Between Unequal Masses
389(2)
10.5 Frame of Reference
391(1)
10.6 Scattering: Collisions in 2D and 3D
392(3)
10.7 Discovering the Nucleus Inside Atoms
395(3)
10.8 Distribution of Scattering Angles
398(2)
10.9 Computational and Analytical Approaches
400(1)
10.10 Relativistic Momentum and Energy
401(2)
10.11 Inelastic Collisions and Quantized Energy
403(2)
10.12 Collisions in Other Reference Frames
405(11)
Summary
410(1)
Questions
410(1)
Problems
411(3)
Computational Problems
414(1)
Answers to Checkpoints
415(1)
Chapter 11 Angular Momentum
416(56)
11.1 Translational Angular Momentum
416(6)
11.2 Rotational Angular Momentum
422(3)
11.3 Total Angular Momentum
425(1)
11.4 Torque
426(2)
11.5 The Angular Momentum Principle
428(2)
11.6 Multiparticle Systems
430(2)
11.7 Systems with Zero Torque
432(9)
11.8 Systems with Nonzero Torques
441(2)
11.9 Predicting Positions When There is Rotation
443(2)
11.10 Computation and Angular Momentum
445(1)
11.11 Angular Momentum Quantization
445(5)
11.12 "Gyroscopes
450(5)
11.13 *More on Moment of Inertia
455(17)
Summary
457(1)
Questions
458(1)
Problems
459(10)
Computational Problems
469(2)
Answers to Checkpoints
471(1)
Chapter 12 Entropy: Limits on the Possible
472(41)
12.1 Irreversibility
472(1)
12.2 The Einstein Model of a Solid
473(7)
12.3 Thermal Equilibrium of Blocks in Contact
480(4)
12.4 The Second Law of Thermodynamics
484(1)
12.5 What is Temperature?
485(3)
12.6 Specific Heat of a Solid
488(5)
12.7 Computational Models
493(1)
12.8 The Boltzmann Distribution
494(4)
12.9 The Boltzmann Distribution in a Gas
498(15)
Summary
506(1)
Questions
507(1)
Problems
508(3)
Computational Problems
511(1)
Answers to Checkpoints
512(1)
VOLUME II Electric and Magnetic Interactions
Chapter 13 Electric Field
513(33)
13.1 New Concepts
513(1)
13.2 Electric Charge and Force
513(2)
13.3 The Concept of "Electric Field"
515(4)
13.4 The Electric Field of a Point Charge
519(3)
13.5 Superposition of Electric Fields
522(2)
13.6 The Electric Field of a Dipole
524(8)
13.7 Choice of System
532(1)
13.8 Is Electric Field Real?
533(2)
13.9 Computational Modeling of Electric Fields
535(11)
Summary
538(1)
Questions
539(1)
Problems
540(4)
Computational Problems
544(1)
Answers to Checkpoints
545(1)
Chapter 14 Electric Fields and Matter
546(42)
14.1 Charged Particles in Matter
546(2)
14.2 How Objects Become Charged
548(3)
14.3 Polarization of Atoms
551(6)
14.4 Polarization of Insulators
557(1)
14.5 Polarization of Conductors
558(3)
14.6 Charge Motion in Metals
561(7)
14.7 Charge Transfer
568(2)
14.8 Practical Issues in Measuring Electric Field
570(18)
Summary
571(1)
Experiments
572(6)
Questions
578(2)
Problems
580(6)
Answers to Checkpoints
586(2)
Chapter 15 Electric Field of Distributed Charges
588(38)
15.1 A Uniformly Charged Thin Rod
588(7)
15.2 Procedure for Calculating Electric Field
595(2)
15.3 A Uniformly Charged Thin Ring
597(2)
15.4 A Uniformly Charged Disk
599(4)
15.5 Two Uniformly Charged Disks: A Capacitor
603(3)
15.6 A Spherical Shell of Charge
606(2)
15.7 A Solid Sphere Charged Throughout its Volume
608(1)
15.8 Infinitesimals and Integrals in Science
609(1)
15.9 3D Numerical Integration with a Computer
610(3)
15.10 *Integrating the Spherical Shell
613(13)
Summary
614(2)
Questions
616(1)
Problems
617(7)
Computational Problems
624(1)
Answers to Checkpoints
625(1)
Chapter 16 Electric Potential
626(47)
16.1 A Review of Potential Energy
626(3)
16.2 Systems of Charged Objects
629(3)
16.3 Potential Difference in a Uniform Field
632(3)
16.4 Sign of Potential Difference
635(2)
16.5 Potential Difference in a Nonuniform Field
637(7)
16.6 Path Independence
644(4)
16.7 The Potential at One Location
648(4)
16.8 Computing Potential Differences
652(1)
16.9 Potential Difference in an Insulator
653(3)
16.10 Energy Density and Electric Field
656(2)
16.11 *Potential of Distributed Charges
658(1)
16.12 *Integrating the Spherical Shell
658(2)
16.13 *Numerical Integration Along a Path
660(13)
Summary
661(1)
Questions
661(2)
Problems
663(9)
Computational Problems
672(1)
Answers to Checkpoints
672(1)
Chapter 17 Magnetic Field
673(43)
17.1 Electron Current
673(1)
17.2 Detecting Magnetic Fields
674(2)
17.3 Biot-Savart Law: Single Moving Charge
676(2)
17.4 Relativistic Effects
678(1)
17.5 Electron Current and Conventional Current
679(3)
17.6 The Biot-Savart Law for Currents
682(1)
17.7 The Magnetic Field of Current Distributions
683(3)
17.8 A Circular Loop of Wire
686(3)
17.9 Computation and 3D Visualization
689(1)
17.10 Magnetic Dipole Moment
690(1)
17.11 The Magnetic Field of a Bar Magnet
691(2)
17.12 The Atomic Structure of Magnets
693(6)
17.13 *Estimate of Orbital Angular Momentum of an Electron in an Atom
699(1)
17.14 *Magnetic Field of a Solenoid
700(16)
Summary
702(1)
Experiments
703(4)
Questions
707(1)
Problems
708(5)
Computational Problems
713(2)
Answers to Checkpoints
715(1)
Chapter 18 Electric Field and Circuits
716(49)
18.1 A Circuit Is Not in Equilibrium
716(1)
18.2 Current in Different Parts of a Circuit
717(3)
18.3 Electric Field and Current
720(2)
18.4 What Charges Make the Electric Field Inside the Wires?
722(4)
18.5 Surface Charge Distributions
726(6)
18.6 Connecting a Circuit: The Initial Transient
732(2)
18.7 Feedback
734(1)
18.8 Surface Charge and Resistors
735(3)
18.9 Energy in a Circuit
738(4)
18.10 Applications of the Theory
742(5)
18.11 Detecting Surface Charge
747(2)
18.12 *Computational Model of a Circuit
749(16)
Summary
751(1)
Experiments
752(3)
Questions
755(2)
Problems
757(6)
Answers to Checkpoints
763(2)
Chapter 19 Circuit Elements
765(40)
19.1 Capacitors
765(6)
19.2 Resistors
771(5)
19.3 Conventional Symbols and Terms
776(1)
19.4 Work and Power in a Circuit
777(2)
19.5 Batteries
779(2)
19.6 Ammeters, Voltmeters, and Ohmmeters
781(2)
19.7 Quantitative Analysis of an RC Circuit
783(3)
19.8 Reflection: The Macro-Micro Connection
786(1)
19.9 *What Are AC and DC?
787(2)
19.10 *Electrons in Metals
789(1)
19.11 *A Complicated Resistive Circuit
789(16)
Summary
792(1)
Experiments
792(2)
Questions
794(3)
Problems
797(6)
Answers to Checkpoints
803(2)
Chapter 20 Magnetic Force
805(62)
20.1 Magnetic Force on a Moving Charge
805(5)
20.2 Magnetic Force on a Current-Carrying Wire
810(2)
20.3 Combining Electric and Magnetic Forces
812(2)
20.4 The Hall Effect
814(5)
20.5 Motional Emf
819(5)
20.6 Magnetic Force in a Moving Reference Frame
824(4)
20.7 Magnetic Torque
828(1)
20.8 Potential Energy for a Magnetic Dipole
829(5)
20.9 Motors and Generators
834(2)
20.10 *Case Study: Sparks in Air
836(10)
20.11 *Relativistic Field Transformations
846(21)
Summary
850(1)
Experiments
851(1)
Questions
851(3)
Problems
854(10)
Computational Problems
864(2)
Answers to Checkpoints
866(1)
Chapter 21 Patterns of Field in Space
867(35)
21.1 Patterns of Electric Field: Gauss's Law
867(2)
21.2 Definition of "Electric Flux"
869(2)
21.3 Gauss's Law
871(6)
21.4 Reasoning from Gauss's Law
877(5)
21.5 Gauss's Law for Magnetism
882(1)
21.6 Patterns of Magnetic Field: Ampere's Law
883(6)
21.7 Maxwell's Equations
889(1)
21.8 Semiconductor Devices
889(1)
21.9 *The Differential Form of Gauss's Law
889(6)
21.10 *The Differential Form of Ampere's Law
895(7)
Summary
896(1)
Questions
897(1)
Problems
897(4)
Computational Problem
901(1)
Answers to Checkpoints
901(1)
Chapter 22 Faraday's Law
902(37)
22.1 Curly Electric Fields
902(3)
22.2 Faraday's Law
905(7)
22.3 Faraday's Law and Motional Emf
912(3)
22.4 Maxwell's Equations
915(1)
22.5 Superconductors
916(2)
22.6 Inductance
918(4)
22.7 *Inductor Circuits
922(4)
22.8 *Some Peculiar Circuits
926(2)
22.9 *The Differential Form of Faraday's Law
928(1)
22.10 *Lenz's Rule
929(10)
Summary
930(1)
Questions
931(1)
Problems
932(6)
Answers to Checkpoints
938(1)
Chapter 23 Electromagnetic Radiation
939(1)
23.1 Maxwell's Equations
939(3)
23.2 Fields Traveling Through Space
942(5)
23.3 Accelerated Charges Produce Radiation
947(4)
23.4 Sinusoidal Electromagnetic Radiation
951(4)
23.5 Energy and Momentum in Radiation
955(4)
23.6 Effects of Radiation on Matter
959(5)
23.7 Light Propagation Through a Medium
964(2)
23.8 Refraction: Bending of Light
966(3)
23.9 Lenses
969(3)
23.10 Image Formation
972(11)
23.11 *The Field of an Accelerated Charge
983(2)
23.12 *Differential Form of Maxwell's Equations
985(1)
Summary
986(1)
Questions
986(2)
Problems
988(3)
Computational Problems
991(1)
Answers to Checkpoints
992
Answers to Odd-Numbered Problems 1(1)
Index 1