|
VOLUME I Modern Mechanics |
|
|
|
Chapter 1 Interactions and Motion |
|
|
1 | (44) |
|
|
1 | (3) |
|
1.2 Detecting Interactions |
|
|
4 | (2) |
|
1.3 Newton's First Law of Motion |
|
|
6 | (2) |
|
1.4 Describing the 3D World: Vectors |
|
|
8 | (9) |
|
|
17 | (1) |
|
|
18 | (2) |
|
1.7 Predicting a New Position |
|
|
20 | (4) |
|
|
24 | (3) |
|
1.9 Using Momentum to Update Position |
|
|
27 | (1) |
|
1.10 Momentum at High Speeds |
|
|
28 | (3) |
|
1.11 Computational Modeling |
|
|
31 | (2) |
|
1.12 The Principle of Relativity |
|
|
33 | (3) |
|
1.13 *Updating Position at High Speed |
|
|
36 | (9) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
42 | (2) |
|
|
44 | (1) |
|
Chapter 2 The Momentum Principle |
|
|
45 | (43) |
|
2.1 The Momentum Principle |
|
|
45 | (5) |
|
2.2 Large Forces and Short Times |
|
|
50 | (5) |
|
2.3 Predicting the Future |
|
|
55 | (2) |
|
2.4 Iterative Prediction: Constant Net Force |
|
|
57 | (3) |
|
2.5 Analytical Prediction: Constant Net Force |
|
|
60 | (5) |
|
2.6 Iterative Prediction: Varying Net Force |
|
|
65 | (7) |
|
2.7 Iterative Calculations on a Computer |
|
|
72 | (3) |
|
2.8 *Derivation: Special-Case Average Velocity |
|
|
75 | (2) |
|
|
77 | (2) |
|
2.10 *Measurements and Units |
|
|
79 | (9) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (4) |
|
|
86 | (1) |
|
|
87 | (1) |
|
Chapter 3 The Fundamental Interactions |
|
|
88 | (42) |
|
3.1 The Fundamental Interactions |
|
|
88 | (1) |
|
3.2 The Gravitational Force |
|
|
89 | (4) |
|
3.3 Approximate Gravitational Force Near the Earth's Surface |
|
|
93 | (2) |
|
|
95 | (1) |
|
3.5 Predicting Motion of Gravitationally Interacting Objects |
|
|
96 | (4) |
|
3.6 Gravitational Force in Computational Models |
|
|
100 | (2) |
|
|
102 | (2) |
|
3.8 The Strong Interaction |
|
|
104 | (2) |
|
|
106 | (1) |
|
3.10 Conservation of Momentum |
|
|
107 | (3) |
|
3.11 The Multiparticle Momentum Principle |
|
|
110 | (3) |
|
3.12 Collisions: Negligible External Forces |
|
|
113 | (3) |
|
|
116 | (1) |
|
3.14 Predicting the Future of Complex Systems |
|
|
117 | (2) |
|
|
119 | (2) |
|
|
121 | (1) |
|
3.17 Measuring the Gravitational Constant G |
|
|
122 | (8) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (5) |
|
|
128 | (1) |
|
|
129 | (1) |
|
Chapter 4 Contact Interactions |
|
|
130 | (43) |
|
4.1 Beyond Point Particles |
|
|
130 | (1) |
|
4.2 The Ball-Spring Model of a Solid |
|
|
131 | (1) |
|
|
132 | (1) |
|
4.4 Length of an Interatomic Bond |
|
|
133 | (2) |
|
4.5 The Stiffness of an Interatomic Bond |
|
|
135 | (3) |
|
4.6 Stress, Strain, and Young's Modulus |
|
|
138 | (3) |
|
4.7 Compression (Normal) Forces |
|
|
141 | (1) |
|
|
141 | (3) |
|
4.9 Speed of Sound in a Solid and Interatomic Bond Stiffness |
|
|
144 | (2) |
|
4.10 Derivative Form of the Momentum Principle |
|
|
146 | (2) |
|
4.11 Analytical Solution: Spring-Mass System |
|
|
148 | (4) |
|
4.12 Analytical vs. Iterative Solutions |
|
|
152 | (2) |
|
4.13 Analytical Expression for Speed of Sound |
|
|
154 | (2) |
|
4.14 Contact Forces Due to Gases |
|
|
156 | (4) |
|
|
160 | (1) |
|
4.16 *A Vertical Spring-Mass System |
|
|
161 | (1) |
|
4.17 *General Solution for the Mass-Spring System |
|
|
161 | (12) |
|
|
163 | (1) |
|
|
164 | (2) |
|
|
166 | (4) |
|
|
170 | (2) |
|
|
172 | (1) |
|
Chapter 5 Determining Forces from Motion |
|
|
173 | (42) |
|
|
173 | (1) |
|
5.2 Identifying all Forces |
|
|
173 | (1) |
|
5.3 Determining Unknown Forces |
|
|
174 | (2) |
|
|
176 | (8) |
|
|
184 | (1) |
|
5.6 Force and Curving Motion |
|
|
185 | (5) |
|
5.7 Dp/Dt for Curving Motion |
|
|
190 | (5) |
|
5.8 Unknown Forces: Curving Motion |
|
|
195 | (5) |
|
5.9 Kinesthetic Sensations |
|
|
200 | (2) |
|
5.10 More Complex Problems |
|
|
202 | (13) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
206 | (7) |
|
|
213 | (1) |
|
|
214 | (1) |
|
Chapter 6 The Energy Principle |
|
|
215 | (69) |
|
|
215 | (1) |
|
6.2 Energy of a Single Particle |
|
|
216 | (5) |
|
6.3 Work: Mechanical Energy Transfer |
|
|
221 | (6) |
|
|
227 | (4) |
|
6.5 Change of Rest Energy |
|
|
231 | (3) |
|
6.6 Proof of the Energy Principle for a Particle |
|
|
234 | (1) |
|
6.7 Potential Energy in Multiparticle Systems |
|
|
235 | (5) |
|
6.8 Gravitational Potential Energy |
|
|
240 | (9) |
|
6.9 Electric Potential Energy |
|
|
249 | (1) |
|
6.10 Plotting Energy vs. Separation |
|
|
250 | (5) |
|
6.11 General Properties of Potential Energy |
|
|
255 | (3) |
|
6.12 The Mass of a Multiparticle System |
|
|
258 | (5) |
|
6.13 Reflection: Why Energy? |
|
|
263 | (1) |
|
6.14 Identifying Initial and Final States |
|
|
264 | (4) |
|
6.15 Energy in Computational Models |
|
|
268 | (1) |
|
|
269 | (1) |
|
6.17 *Gradient of Potential Energy |
|
|
270 | (1) |
|
6.18 *Integrals and Antiderivatives |
|
|
271 | (1) |
|
6.19 *Approximation for Kinetic Energy |
|
|
272 | (1) |
|
6.20 *Finding the Expression for Particle Energy |
|
|
273 | (1) |
|
6.21 *Finding an Angle from the Dot Product |
|
|
274 | (10) |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (6) |
|
|
282 | (1) |
|
|
283 | (1) |
|
Chapter 7 Internal Energy |
|
|
284 | (39) |
|
|
284 | (1) |
|
7.2 Potential Energy of Macroscopic Springs |
|
|
284 | (6) |
|
7.3 Potential Energy of a Pair of Neutral Atoms |
|
|
290 | (2) |
|
|
292 | (5) |
|
7.5 Energy Transfer Due to a Temperature Difference |
|
|
297 | (3) |
|
7.6 Power: Energy per Unit Time |
|
|
300 | (1) |
|
7.7 Open and Closed Systems |
|
|
300 | (2) |
|
7.8 The Choice of System Affects Energy Accounting |
|
|
302 | (2) |
|
7.9 The Choice of Reference Frame Affects Energy Accounting |
|
|
304 | (2) |
|
|
306 | (6) |
|
7.11 Energy Dissipation in Computational Models |
|
|
312 | (2) |
|
|
314 | (9) |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
321 | (2) |
|
Chapter 8 Energy Quantization |
|
|
323 | (26) |
|
|
323 | (1) |
|
8.2 Electronic Energy Levels |
|
|
324 | (10) |
|
8.3 The Effect of Temperature |
|
|
334 | (1) |
|
8.4 Vibrational Energy Levels |
|
|
335 | (3) |
|
8.5 Rotational Energy Levels |
|
|
338 | (1) |
|
|
339 | (1) |
|
8.7 Comparison of Energy-Level Spacings |
|
|
339 | (1) |
|
8.8 *Random Emission Time |
|
|
340 | (1) |
|
8.9 *Case Study: How a Laser Works |
|
|
340 | (2) |
|
8.10 *Wavelength of Light |
|
|
342 | (7) |
|
|
343 | (1) |
|
|
343 | (1) |
|
|
344 | (2) |
|
|
346 | (2) |
|
|
348 | (1) |
|
Chapter 9 Translational, Rotational, and Vibrational Energy |
|
|
349 | (34) |
|
9.1 Separation of Multiparticle System Energy |
|
|
349 | (4) |
|
9.2 Rotational Kinetic Energy |
|
|
353 | (6) |
|
9.3 Comparing Two Models of a System |
|
|
359 | (9) |
|
9.4 Modeling Friction in Detail |
|
|
368 | (5) |
|
9.5 *Derivation: Kinetic Energy of a Multiparticle System |
|
|
373 | (1) |
|
9.6 *Derivation: The Point Particle Energy Equation |
|
|
374 | (9) |
|
|
376 | (1) |
|
|
376 | (1) |
|
|
377 | (5) |
|
|
382 | (1) |
|
|
383 | (33) |
|
|
383 | (1) |
|
10.2 Elastic and Inelastic Collisions |
|
|
384 | (2) |
|
10.3 A Head-on Collision of Equal Masses |
|
|
386 | (3) |
|
10.4 Head-on Collisions Between Unequal Masses |
|
|
389 | (2) |
|
|
391 | (1) |
|
10.6 Scattering: Collisions in 2D and 3D |
|
|
392 | (3) |
|
10.7 Discovering the Nucleus Inside Atoms |
|
|
395 | (3) |
|
10.8 Distribution of Scattering Angles |
|
|
398 | (2) |
|
10.9 Computational and Analytical Approaches |
|
|
400 | (1) |
|
10.10 Relativistic Momentum and Energy |
|
|
401 | (2) |
|
10.11 Inelastic Collisions and Quantized Energy |
|
|
403 | (2) |
|
10.12 Collisions in Other Reference Frames |
|
|
405 | (11) |
|
|
410 | (1) |
|
|
410 | (1) |
|
|
411 | (3) |
|
|
414 | (1) |
|
|
415 | (1) |
|
Chapter 11 Angular Momentum |
|
|
416 | (56) |
|
11.1 Translational Angular Momentum |
|
|
416 | (6) |
|
11.2 Rotational Angular Momentum |
|
|
422 | (3) |
|
11.3 Total Angular Momentum |
|
|
425 | (1) |
|
|
426 | (2) |
|
11.5 The Angular Momentum Principle |
|
|
428 | (2) |
|
11.6 Multiparticle Systems |
|
|
430 | (2) |
|
11.7 Systems with Zero Torque |
|
|
432 | (9) |
|
11.8 Systems with Nonzero Torques |
|
|
441 | (2) |
|
11.9 Predicting Positions When There is Rotation |
|
|
443 | (2) |
|
11.10 Computation and Angular Momentum |
|
|
445 | (1) |
|
11.11 Angular Momentum Quantization |
|
|
445 | (5) |
|
|
450 | (5) |
|
11.13 *More on Moment of Inertia |
|
|
455 | (17) |
|
|
457 | (1) |
|
|
458 | (1) |
|
|
459 | (10) |
|
|
469 | (2) |
|
|
471 | (1) |
|
Chapter 12 Entropy: Limits on the Possible |
|
|
472 | (41) |
|
|
472 | (1) |
|
12.2 The Einstein Model of a Solid |
|
|
473 | (7) |
|
12.3 Thermal Equilibrium of Blocks in Contact |
|
|
480 | (4) |
|
12.4 The Second Law of Thermodynamics |
|
|
484 | (1) |
|
12.5 What is Temperature? |
|
|
485 | (3) |
|
12.6 Specific Heat of a Solid |
|
|
488 | (5) |
|
12.7 Computational Models |
|
|
493 | (1) |
|
12.8 The Boltzmann Distribution |
|
|
494 | (4) |
|
12.9 The Boltzmann Distribution in a Gas |
|
|
498 | (15) |
|
|
506 | (1) |
|
|
507 | (1) |
|
|
508 | (3) |
|
|
511 | (1) |
|
|
512 | (1) |
|
VOLUME II Electric and Magnetic Interactions |
|
|
|
Chapter 13 Electric Field |
|
|
513 | (33) |
|
|
513 | (1) |
|
13.2 Electric Charge and Force |
|
|
513 | (2) |
|
13.3 The Concept of "Electric Field" |
|
|
515 | (4) |
|
13.4 The Electric Field of a Point Charge |
|
|
519 | (3) |
|
13.5 Superposition of Electric Fields |
|
|
522 | (2) |
|
13.6 The Electric Field of a Dipole |
|
|
524 | (8) |
|
|
532 | (1) |
|
13.8 Is Electric Field Real? |
|
|
533 | (2) |
|
13.9 Computational Modeling of Electric Fields |
|
|
535 | (11) |
|
|
538 | (1) |
|
|
539 | (1) |
|
|
540 | (4) |
|
|
544 | (1) |
|
|
545 | (1) |
|
Chapter 14 Electric Fields and Matter |
|
|
546 | (42) |
|
14.1 Charged Particles in Matter |
|
|
546 | (2) |
|
14.2 How Objects Become Charged |
|
|
548 | (3) |
|
14.3 Polarization of Atoms |
|
|
551 | (6) |
|
14.4 Polarization of Insulators |
|
|
557 | (1) |
|
14.5 Polarization of Conductors |
|
|
558 | (3) |
|
14.6 Charge Motion in Metals |
|
|
561 | (7) |
|
|
568 | (2) |
|
14.8 Practical Issues in Measuring Electric Field |
|
|
570 | (18) |
|
|
571 | (1) |
|
|
572 | (6) |
|
|
578 | (2) |
|
|
580 | (6) |
|
|
586 | (2) |
|
Chapter 15 Electric Field of Distributed Charges |
|
|
588 | (38) |
|
15.1 A Uniformly Charged Thin Rod |
|
|
588 | (7) |
|
15.2 Procedure for Calculating Electric Field |
|
|
595 | (2) |
|
15.3 A Uniformly Charged Thin Ring |
|
|
597 | (2) |
|
15.4 A Uniformly Charged Disk |
|
|
599 | (4) |
|
15.5 Two Uniformly Charged Disks: A Capacitor |
|
|
603 | (3) |
|
15.6 A Spherical Shell of Charge |
|
|
606 | (2) |
|
15.7 A Solid Sphere Charged Throughout its Volume |
|
|
608 | (1) |
|
15.8 Infinitesimals and Integrals in Science |
|
|
609 | (1) |
|
15.9 3D Numerical Integration with a Computer |
|
|
610 | (3) |
|
15.10 *Integrating the Spherical Shell |
|
|
613 | (13) |
|
|
614 | (2) |
|
|
616 | (1) |
|
|
617 | (7) |
|
|
624 | (1) |
|
|
625 | (1) |
|
Chapter 16 Electric Potential |
|
|
626 | (47) |
|
16.1 A Review of Potential Energy |
|
|
626 | (3) |
|
16.2 Systems of Charged Objects |
|
|
629 | (3) |
|
16.3 Potential Difference in a Uniform Field |
|
|
632 | (3) |
|
16.4 Sign of Potential Difference |
|
|
635 | (2) |
|
16.5 Potential Difference in a Nonuniform Field |
|
|
637 | (7) |
|
|
644 | (4) |
|
16.7 The Potential at One Location |
|
|
648 | (4) |
|
16.8 Computing Potential Differences |
|
|
652 | (1) |
|
16.9 Potential Difference in an Insulator |
|
|
653 | (3) |
|
16.10 Energy Density and Electric Field |
|
|
656 | (2) |
|
16.11 *Potential of Distributed Charges |
|
|
658 | (1) |
|
16.12 *Integrating the Spherical Shell |
|
|
658 | (2) |
|
16.13 *Numerical Integration Along a Path |
|
|
660 | (13) |
|
|
661 | (1) |
|
|
661 | (2) |
|
|
663 | (9) |
|
|
672 | (1) |
|
|
672 | (1) |
|
Chapter 17 Magnetic Field |
|
|
673 | (43) |
|
|
673 | (1) |
|
17.2 Detecting Magnetic Fields |
|
|
674 | (2) |
|
17.3 Biot-Savart Law: Single Moving Charge |
|
|
676 | (2) |
|
17.4 Relativistic Effects |
|
|
678 | (1) |
|
17.5 Electron Current and Conventional Current |
|
|
679 | (3) |
|
17.6 The Biot-Savart Law for Currents |
|
|
682 | (1) |
|
17.7 The Magnetic Field of Current Distributions |
|
|
683 | (3) |
|
17.8 A Circular Loop of Wire |
|
|
686 | (3) |
|
17.9 Computation and 3D Visualization |
|
|
689 | (1) |
|
17.10 Magnetic Dipole Moment |
|
|
690 | (1) |
|
17.11 The Magnetic Field of a Bar Magnet |
|
|
691 | (2) |
|
17.12 The Atomic Structure of Magnets |
|
|
693 | (6) |
|
17.13 *Estimate of Orbital Angular Momentum of an Electron in an Atom |
|
|
699 | (1) |
|
17.14 *Magnetic Field of a Solenoid |
|
|
700 | (16) |
|
|
702 | (1) |
|
|
703 | (4) |
|
|
707 | (1) |
|
|
708 | (5) |
|
|
713 | (2) |
|
|
715 | (1) |
|
Chapter 18 Electric Field and Circuits |
|
|
716 | (49) |
|
18.1 A Circuit Is Not in Equilibrium |
|
|
716 | (1) |
|
18.2 Current in Different Parts of a Circuit |
|
|
717 | (3) |
|
18.3 Electric Field and Current |
|
|
720 | (2) |
|
18.4 What Charges Make the Electric Field Inside the Wires? |
|
|
722 | (4) |
|
18.5 Surface Charge Distributions |
|
|
726 | (6) |
|
18.6 Connecting a Circuit: The Initial Transient |
|
|
732 | (2) |
|
|
734 | (1) |
|
18.8 Surface Charge and Resistors |
|
|
735 | (3) |
|
|
738 | (4) |
|
18.10 Applications of the Theory |
|
|
742 | (5) |
|
18.11 Detecting Surface Charge |
|
|
747 | (2) |
|
18.12 *Computational Model of a Circuit |
|
|
749 | (16) |
|
|
751 | (1) |
|
|
752 | (3) |
|
|
755 | (2) |
|
|
757 | (6) |
|
|
763 | (2) |
|
Chapter 19 Circuit Elements |
|
|
765 | (40) |
|
|
765 | (6) |
|
|
771 | (5) |
|
19.3 Conventional Symbols and Terms |
|
|
776 | (1) |
|
19.4 Work and Power in a Circuit |
|
|
777 | (2) |
|
|
779 | (2) |
|
19.6 Ammeters, Voltmeters, and Ohmmeters |
|
|
781 | (2) |
|
19.7 Quantitative Analysis of an RC Circuit |
|
|
783 | (3) |
|
19.8 Reflection: The Macro-Micro Connection |
|
|
786 | (1) |
|
19.9 *What Are AC and DC? |
|
|
787 | (2) |
|
19.10 *Electrons in Metals |
|
|
789 | (1) |
|
19.11 *A Complicated Resistive Circuit |
|
|
789 | (16) |
|
|
792 | (1) |
|
|
792 | (2) |
|
|
794 | (3) |
|
|
797 | (6) |
|
|
803 | (2) |
|
Chapter 20 Magnetic Force |
|
|
805 | (62) |
|
20.1 Magnetic Force on a Moving Charge |
|
|
805 | (5) |
|
20.2 Magnetic Force on a Current-Carrying Wire |
|
|
810 | (2) |
|
20.3 Combining Electric and Magnetic Forces |
|
|
812 | (2) |
|
|
814 | (5) |
|
|
819 | (5) |
|
20.6 Magnetic Force in a Moving Reference Frame |
|
|
824 | (4) |
|
|
828 | (1) |
|
20.8 Potential Energy for a Magnetic Dipole |
|
|
829 | (5) |
|
20.9 Motors and Generators |
|
|
834 | (2) |
|
20.10 *Case Study: Sparks in Air |
|
|
836 | (10) |
|
20.11 *Relativistic Field Transformations |
|
|
846 | (21) |
|
|
850 | (1) |
|
|
851 | (1) |
|
|
851 | (3) |
|
|
854 | (10) |
|
|
864 | (2) |
|
|
866 | (1) |
|
Chapter 21 Patterns of Field in Space |
|
|
867 | (35) |
|
21.1 Patterns of Electric Field: Gauss's Law |
|
|
867 | (2) |
|
21.2 Definition of "Electric Flux" |
|
|
869 | (2) |
|
|
871 | (6) |
|
21.4 Reasoning from Gauss's Law |
|
|
877 | (5) |
|
21.5 Gauss's Law for Magnetism |
|
|
882 | (1) |
|
21.6 Patterns of Magnetic Field: Ampere's Law |
|
|
883 | (6) |
|
|
889 | (1) |
|
21.8 Semiconductor Devices |
|
|
889 | (1) |
|
21.9 *The Differential Form of Gauss's Law |
|
|
889 | (6) |
|
21.10 *The Differential Form of Ampere's Law |
|
|
895 | (7) |
|
|
896 | (1) |
|
|
897 | (1) |
|
|
897 | (4) |
|
|
901 | (1) |
|
|
901 | (1) |
|
|
902 | (37) |
|
22.1 Curly Electric Fields |
|
|
902 | (3) |
|
|
905 | (7) |
|
22.3 Faraday's Law and Motional Emf |
|
|
912 | (3) |
|
|
915 | (1) |
|
|
916 | (2) |
|
|
918 | (4) |
|
|
922 | (4) |
|
22.8 *Some Peculiar Circuits |
|
|
926 | (2) |
|
22.9 *The Differential Form of Faraday's Law |
|
|
928 | (1) |
|
|
929 | (10) |
|
|
930 | (1) |
|
|
931 | (1) |
|
|
932 | (6) |
|
|
938 | (1) |
|
Chapter 23 Electromagnetic Radiation |
|
|
939 | (1) |
|
|
939 | (3) |
|
23.2 Fields Traveling Through Space |
|
|
942 | (5) |
|
23.3 Accelerated Charges Produce Radiation |
|
|
947 | (4) |
|
23.4 Sinusoidal Electromagnetic Radiation |
|
|
951 | (4) |
|
23.5 Energy and Momentum in Radiation |
|
|
955 | (4) |
|
23.6 Effects of Radiation on Matter |
|
|
959 | (5) |
|
23.7 Light Propagation Through a Medium |
|
|
964 | (2) |
|
23.8 Refraction: Bending of Light |
|
|
966 | (3) |
|
|
969 | (3) |
|
|
972 | (11) |
|
23.11 *The Field of an Accelerated Charge |
|
|
983 | (2) |
|
23.12 *Differential Form of Maxwell's Equations |
|
|
985 | (1) |
|
|
986 | (1) |
|
|
986 | (2) |
|
|
988 | (3) |
|
|
991 | (1) |
|
|
992 | |
Answers to Odd-Numbered Problems |
|
1 | (1) |
Index |
|
1 | |