Atnaujinkite slapukų nuostatas

El. knyga: Maximal Solvable Subgroups of Finite Classical Groups

  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2346
  • Išleidimo metai: 26-Jul-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031629150
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Mathematics 2346
  • Išleidimo metai: 26-Jul-2024
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031629150
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book studies maximal solvable subgroups of classical groups over finite fields. It provides the first modern account of Camille Jordan's classical results, and extends them, giving a classification of maximal irreducible solvable subgroups of general linear groups, symplectic groups, and orthogonal groups over arbitrary finite fields.





A subgroup of a group G is said to be maximal solvable if it is maximal among the solvable subgroups of G. The history of this notion goes back to Jordans Traité (1870), in which he provided a classification of maximal solvable subgroups of symmetric groups. The main difficulty is in the primitive case, which leads to the problem of classifying maximal irreducible solvable subgroups of general linear groups over a field of prime order. One purpose of this monograph is expository: to give a proof of Jordans classification in modern terms. More generally, the aim is to generalize these results to classical groups over arbitrary finite fields, and to provide other results of interest related to irreducible solvable matrix groups.





The text will be accessible to graduate students and researchers interested in primitive permutation groups, irreducible matrix groups, and related topics in group theory and representation theory. The detailed introduction will appeal to those interested in the historical background of Jordans work.

Recenzijos

The book is enriched with numerous worked examples and summary tables, making the results more accessible to readers. This book is a wonderful resource for mathematicians studying finite groups or related fields like representation theory. The author combines clear explanations with rigorous proofs, making the material approachable for readers with a solid foundation in group theory." (Kvanē Ersoy, zbMATH 1553.20001, 2025)

- Introduction.- Basic structure of maximal irreducible solvable
subgroups.- Extraspecial groups.- Metrically primitive maximal irreducible
solvable subgroups.- Basic properties of GB ,(X1, . . . ,Xk).- Fixed point
spaces and abelian subgroups.- Maximality of the groups constructed.-
Examples.
Mikko Korhonen is a research assistant professor at the Southern University of Science and Technology, Shenzhen, China. His main research interests are in topics related to the representation theory and subgroup structure of linear algebraic groups and finite groups. Previously, he was a postdoctoral research fellow at the University of Manchester, and he obtained his PhD from the École Polytechnique Fédérale de Lausanne.