Atnaujinkite slapukų nuostatas

El. knyga: Measure Theory

4.12/5 (43 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 18
  • Išleidimo metai: 19-Dec-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781468494402
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: Graduate Texts in Mathematics 18
  • Išleidimo metai: 19-Dec-2013
  • Leidėjas: Springer-Verlag New York Inc.
  • Kalba: eng
  • ISBN-13: 9781468494402
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Useful as a text for students and a reference for the more advanced mathematician, this book presents a unified treatment of that part of measure theory most useful for its application in modern analysis. Coverage includes sets and classes, measures and outer measures, Haar measure and measure and topology in groups.

From the reviews: "Will serve the interested student to find his way to active and creative work in the field of Hilbert space theory." --MATHEMATICAL REVIEWS

Recenzijos

P.R. Halmos



Measure Theory



"As with the first edition, this considerably improved volume will serve the interested student to find his way to active and creative work in the field of Hilbert space theory."MATHEMATICAL REVIEWS

Daugiau informacijos

Springer Book Archives
Preface v
Acknowledgments vii
0 Prerequisites
1(8)
Chapter I Sets and Classes
1 Set inclusion
9(2)
2 Unions and intersections
11(5)
3 Limits, complements, and differences
16(3)
4 Rings and algebras
19(3)
5 Generated rings and σ-rings
22(4)
6 Monotone classes
26(4)
Chapter II Measures and Outer Measures
7 Measure on rings
30(2)
8 Measure on intervals
32(5)
9 Properties of measures
37(4)
10 Outer measures
41(3)
11 Measurable sets
44(5)
Chapter III Extension of Measures
12 Properties of induced measures
49(5)
13 Extension, completion, and approximation
54(4)
14 Inner measures
58(4)
15 Lebesgue measure
62(5)
16 Non measurable sets
67(6)
Chapter IV Measurable Functions
17 Measure spaces
73(3)
18 Measurable functions
76(4)
19 Combinations of measurable functions
80(4)
20 Sequences of measurable functions
84(2)
21 Pointwise convergence
86(4)
22 Convergence in measure
90(5)
Chapter V Integration
23 Integrable simple functions
95(3)
24 Sequences of integrable simple functions
98(4)
25 Integrable functions
102(5)
26 Sequences of integrable functions
107(5)
27 Properties of integrals
112(5)
Chapter VI General Set Functions
28 Signed measures
117(3)
29 Hahn and Jordan decompositions
120(4)
30 Absolute continuity
124(4)
31 The Radon-Nikodym theorem
128(4)
32 Derivatives of signed measures
132(5)
Chapter VII Product Spaces
33 Cartesian products
137(4)
34 Sections
141(2)
35 Product measures
143(2)
36 Fubini's theorem
145(5)
37 Finite dimensional product spaces
150(4)
38 Infinite dimensional product spaces
154(7)
Chapter VIII Transformations and Functions
39 Measurable transformations
161(4)
40 Measure rings
165(6)
41 The isomorphism theorem
171(3)
42 Function spaces
174(4)
43 Set functions and point functions
178(6)
Chapter IX Probability
44 Heuristic introduction
184(7)
45 Independence
191(5)
46 Series of independent functions
196(5)
47 The law of large numbers
201(5)
48 Conditional probabilities and expectations
206(5)
49 Measures on product spaces
211(5)
Chapter X Locally Compact Spaces
50 Topological lemmas
216(3)
51 Borel sets and Baire sets
219(4)
52 Regular measures
223(8)
53 Generation of Borel measures
231(6)
54 Regular contents
237(3)
55 Classes of continuous functions
240(3)
56 Linear functionals
243(7)
Chapter XI Haar Measure
57 Full subgroups
250(1)
58 Existence
251(6)
59 Measurable groups
257(5)
60 Uniqueness
262(4)
Chapter XII Measure and Topology In Groups
61 Topology in terms of measure
266(4)
62 Weil topology
270(7)
63 Quotient groups
277(5)
64 The regularity of Haar measure
282(9)
References 291(2)
Bibliography 293(4)
List of frequently used symbols 297(2)
Index 299