|
|
|
|
3 | (14) |
|
|
3 | (3) |
|
|
6 | (4) |
|
|
10 | (3) |
|
|
13 | (2) |
|
|
15 | (2) |
|
2 Integration of Measurable Functions |
|
|
17 | (24) |
|
2.1 Integration of Nonnegative Functions |
|
|
17 | (10) |
|
|
27 | (4) |
|
2.3 Integrals Depending on a Parameter |
|
|
31 | (4) |
|
|
35 | (6) |
|
3 Construction of Measures |
|
|
41 | (22) |
|
|
41 | (3) |
|
|
44 | (9) |
|
3.3 Relation with Riemann Integrals |
|
|
53 | (2) |
|
3.4 A Subset of 1 Which Is Not Measurable |
|
|
55 | (1) |
|
3.5 Finite Measures on K and the Stieltjes Integral |
|
|
56 | (2) |
|
3.6 The Riesz-Markov-Kakutani Representation Theorem |
|
|
58 | (1) |
|
|
59 | (4) |
|
|
63 | (22) |
|
4.1 Definitions and the Holder Inequality |
|
|
63 | (4) |
|
4.2 The Banach Space LP (E, A, μ) |
|
|
67 | (4) |
|
4.3 Density Theorems in Lp Spaces |
|
|
71 | (4) |
|
4.4 The Radon-Nikodym Theorem |
|
|
75 | (6) |
|
|
81 | (4) |
|
|
85 | (20) |
|
|
85 | (2) |
|
|
87 | (3) |
|
|
90 | (4) |
|
|
94 | (7) |
|
5.4.1 Integration by Parts |
|
|
94 | (1) |
|
|
95 | (4) |
|
5.4.3 The Volume of the Unit Ball |
|
|
99 | (2) |
|
|
101 | (4) |
|
|
105 | (16) |
|
6.1 Definition and Total Variation |
|
|
105 | (4) |
|
6.2 The Jordan Decomposition |
|
|
109 | (4) |
|
6.3 The Duality Between Lp and Lq |
|
|
113 | (5) |
|
6.4 The Riesz-Markov-Kakutani Representation Theorem for Signed Measures |
|
|
118 | (1) |
|
|
119 | (2) |
|
|
121 | (14) |
|
7.1 The Change of Variables Formula |
|
|
121 | (6) |
|
|
127 | (1) |
|
7.3 Lebesgue Measure on the Unit Sphere |
|
|
128 | (2) |
|
|
130 | (5) |
|
Part II Probability Theory |
|
|
|
8 Foundations of Probability Theory |
|
|
135 | (32) |
|
|
136 | (15) |
|
|
136 | (2) |
|
|
138 | (2) |
|
8.1.3 Mathematical Expectation |
|
|
140 | (4) |
|
8.1.4 An Example: Bertrand's Paradox |
|
|
144 | (2) |
|
|
146 | (3) |
|
8.1.6 Distribution Function of a Real Random Variable |
|
|
149 | (1) |
|
8.1.7 The a-Field Generated by a Random Variable |
|
|
150 | (1) |
|
8.2 Moments of Random Variables |
|
|
151 | (11) |
|
8.2.1 Moments and Variance |
|
|
151 | (4) |
|
|
155 | (1) |
|
8.2.3 Characteristic Functions |
|
|
156 | (4) |
|
8.2.4 Laplace Transform and Generating Functions |
|
|
160 | (2) |
|
|
162 | (5) |
|
|
167 | (32) |
|
|
168 | (1) |
|
9.2 Independence for σ-Fields and Random Variables |
|
|
169 | (8) |
|
9.3 The Borel-Cantelli Lemma |
|
|
177 | (4) |
|
9.4 Construction of Independent Sequences |
|
|
181 | (1) |
|
9.5 Sums of Independent Random Variables |
|
|
182 | (4) |
|
9.6 Convolution Semigroups |
|
|
186 | (2) |
|
|
188 | (7) |
|
|
195 | (4) |
|
10 Convergence of Random Variables |
|
|
199 | (28) |
|
10.1 The Different Notions of Convergence |
|
|
199 | (5) |
|
10.2 The Strong Law of Large Numbers |
|
|
204 | (5) |
|
10.3 Convergence in Distribution |
|
|
209 | (7) |
|
|
216 | (7) |
|
10.4.1 The Convergence of Empirical Measures |
|
|
216 | (3) |
|
10.4.2 The Central Limit Theorem |
|
|
219 | (2) |
|
10.4.3 The Multidimensional Central Limit Theorem |
|
|
221 | (2) |
|
|
223 | (4) |
|
|
227 | (30) |
|
11.1 Discrete Conditioning |
|
|
227 | (3) |
|
11.2 The Definition of Conditional Expectation |
|
|
230 | (8) |
|
11.2.1 Integrable Random Variables |
|
|
230 | (3) |
|
11.2.2 Nonnegative Random Variables |
|
|
233 | (4) |
|
11.2.3 The Special Case of Square Integrable Variables |
|
|
237 | (1) |
|
11.3 Specific Properties of the Conditional Expectation |
|
|
238 | (4) |
|
11.4 Evaluation of Conditional Expectation |
|
|
242 | (6) |
|
11.4.1 Discrete Conditioning |
|
|
242 | (1) |
|
11.4.2 Random Variables with a Density |
|
|
242 | (2) |
|
11.4.3 Gaussian Conditioning |
|
|
244 | (4) |
|
11.5 Transition Probabilities and Conditional Distributions |
|
|
248 | (3) |
|
|
251 | (6) |
|
Part III Stochastic Processes |
|
|
|
|
257 | (46) |
|
12.1 Definitions and Examples |
|
|
257 | (6) |
|
|
263 | (3) |
|
12.3 Almost Sure Convergence of Martingales |
|
|
266 | (8) |
|
12.4 Convergence in Lp When p > 1 |
|
|
274 | (6) |
|
12.5 Uniform Integrability and Martingales |
|
|
280 | (4) |
|
12.6 Optional Stopping Theorems |
|
|
284 | (6) |
|
12.7 Backward Martingales |
|
|
290 | (6) |
|
|
296 | (7) |
|
|
303 | (46) |
|
13.1 Definitions and First Properties |
|
|
303 | (5) |
|
|
308 | (3) |
|
13.2.1 Independent Random Variables |
|
|
308 | (1) |
|
13.2.2 Random Walks on 1d |
|
|
309 | (1) |
|
13.2.3 Simple Random Walk on a Graph |
|
|
309 | (1) |
|
13.2.4 Galton-Watson Branching Processes |
|
|
310 | (1) |
|
13.3 The Canonical Markov Chain |
|
|
311 | (6) |
|
13.4 The Classification of States |
|
|
317 | (9) |
|
|
326 | (6) |
|
|
332 | (6) |
|
13.7 Martingales and Markov Chains |
|
|
338 | (5) |
|
|
343 | (6) |
|
|
349 | (46) |
|
14.1 Brownian Motion as a Limit of Random Walks |
|
|
349 | (4) |
|
14.2 The Construction of Brownian Motion |
|
|
353 | (6) |
|
|
359 | (2) |
|
14.4 First Properties of Brownian Motion |
|
|
361 | (4) |
|
14.5 The Strong Markov Property |
|
|
365 | (7) |
|
14.6 Harmonic Functions and the Dirichlet Problem |
|
|
372 | (11) |
|
14.7 Harmonic Functions and Brownian Motion |
|
|
383 | (6) |
|
|
389 | (6) |
A A Few Facts from Functional Analysis |
|
395 | (4) |
Notes and Suggestions for Further Reading |
|
399 | (2) |
References |
|
401 | (2) |
Index |
|
403 | |