Atnaujinkite slapukų nuostatas

El. knyga: Measurement and Detection of Radiation

3.93/5 (14 ratings by Goodreads)
(University of Nevada, Reno, USA), (The University of Texas at Austin, USA)
  • Formatas: 642 pages
  • Išleidimo metai: 15-Sep-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000417807
  • Formatas: 642 pages
  • Išleidimo metai: 15-Sep-2021
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781000417807

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. There have been many advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fifth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. It also includes more problems and updated references and bibliographies, and step-by-step derivations and numerous examples illustrate key concepts"--

As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. There have been many advances in the field of radiation detection, most notably in practical applications. Incorporating these important developments, Measurement and Detection of Radiation, Fifth Edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications. It also includes more problems and updated references and bibliographies, and step-by-step derivations and numerous examples illustrate key concepts.

New to the Fifth Edition:

• Expanded chapters on semiconductor detectors, data analysis methods, health physics fundamentals, and nuclear forensics.
• Updated references and bibliographies.
• New and expanded problems.



As useful to students and nuclear professionals as its popular predecessors, this fifth edition provides the most up-to-date and accessible introduction to radiation detector materials, systems, and applications.

Preface to the First Edition xix
Preface to the Second Edition xxiii
Preface to the Third Edition xxv
Preface to the Fourth Edition xxvii
Preface to the Fifth Edition xxix
Authors xxxi
Chapter 1 Introduction to Radiation Measurements
1(14)
1.1 What Is Meant by Radiation?
1(1)
1.2 Statistical Nature of Radiation Emission
2(1)
1.3 Uncertainty, Accuracy and Precision of Measurements
2(2)
1.4 Types of Errors
4(1)
1.5 Nuclear Instrumentation
5(9)
1.5.1 Introduction
5(1)
1.5.2 Detector
6(1)
1.5.3 Nuclear Instrument Module (NIM) Concept
7(1)
1.5.4 High-Voltage Power Supply
8(1)
1.5.5 Preamplifier
9(1)
1.5.6 Amplifier
10(1)
1.5.7 Oscilloscope
11(1)
1.5.8 Discriminator or Single-Channel Analyzer (SCA)
12(1)
1.5.9 Pulse Generator
13(1)
1.5.10 Timer and Counter
13(1)
1.5.11 Multichannel Analyzer
13(1)
1.6 Recent Advances in Radiation Measurements
14(1)
References
14(1)
Further Reading
14(1)
Chapter 2 Uncertainties of Radiation Counting
15(58)
2.1 Introduction
15(1)
2.2 Definition of Probability
15(2)
2.3 Basic Probability Theorems
17(3)
2.4 Probability Distributions and Random Variables
20(2)
2.5 Location Indexes (Mode, Median, Mean)
22(3)
2.6 Dispersion Indexes, Variance, and Standard Deviation
25(1)
2.7 Covariance and Correlation
26(2)
2.8 Binomial Distribution
28(2)
2.9 Poisson Distribution
30(3)
2.10 Normal (Gaussian) Distribution
33(5)
2.10.1 Standard Normal Distribution
34(2)
2.10.2 Importance of the Gaussian Distribution for Radiation Measurements
36(2)
2.11 Lorentzian Distribution
38(1)
2.12 Standard, Probable, and Other Uncertainties
38(2)
2.13 Arithmetic Mean and Its Standard Uncertainty
40(2)
2.14 Confidence Limits
42(2)
2.15 Propagation of Uncertainty
44(5)
2.15.1 The Average and Its Standard Deviation for Quantities with More than One Random Variable
44(2)
2.15.2 Examples of Uncertainty Propagation---Uncorrelated Variables
46(3)
2.16 Goodness of Data---Χ2 Criterion---Rejection of Data
49(3)
2.17 Statistical Uncertainty of Radiation Measurements
52(2)
2.18 Standard Uncertainty of Counting Rates
54(4)
2.18.1 Combining Counting Rates
57(1)
2.19 Methods of Uncertainty Reduction
58(3)
2.19.1 Background Is Constant and There Is No Time Limit for Its Measurement
58(1)
2.19.2 There Is a Fixed Time t Available for Counting Both Background and Gross Counts
59(1)
2.19.3 Calculation of the Counting Time Necessary to Measure a Counting Rate with a Predetermined Statistical Uncertainty
60(1)
2.19.4 Relative Importance of Uncertainty Components
61(1)
2.20 Minimum Detectable Activity
61(2)
2.21 Detector Dead Time Correction and Measurement of Dead Time
63(3)
2.22 Further Considerations of Uncertainty Measurements and Detection Limits
66(7)
Problems
67(3)
References
70(1)
Further Reading
71(2)
Chapter 3 Review of Atomic and Nuclear Physics
73(46)
3.1 Introduction
73(1)
3.2 Elements of Relativistic Kinematics
73(5)
3.3 Atoms
78(1)
3.4 Nuclei
79(2)
3.5 Nuclear Binding Energy
81(4)
3.6 Nuclear Energy Levels
85(2)
3.7 Energetics of Nuclear Decays
87(9)
3.7.1 Gamma Decay
87(3)
3.7.2 Alpha Decay
90(1)
3.7.3 Beta Decay
91(4)
3.7.4 Particles, Antiparticles, and Electron--Positron Annihilation
95(1)
3.7.5 Complex Decay Schemes
96(1)
3.8 Radioactive Decay Law
96(8)
3.8.1 Natural Background Radiation
100(4)
3.9 Nuclear Reactions
104(7)
3.9.1 General Remarks
104(2)
3.9.2 Kinematics of Nuclear Reactions
106(2)
3.9.3 Endothermic and Exothermic Reactions
108(3)
3.10 Fission
111(2)
3.11 Nuclear Data on the Internet
113(6)
Problems
115(2)
References
117(1)
Further Reading
118(1)
Chapter 4 Energy Loss and Penetration of Radiation through Matter
119(54)
4.1 Introduction
119(1)
4.2 Mechanisms of Charged-Particle Energy Loss
120(2)
4.2.1 Coulomb Interactions
120(1)
4.2.2 Emission of Electromagnetic Radiation (Bremsstrahlung)
121(1)
4.3 Stopping Power due to Ionization and Excitation
122(4)
4.4 Energy Loss due to Bremsstrahlung Emission
126(2)
4.5 Calculation of dE/dx for a Compound or Mixture
128(2)
4.6 Range of Charged Particles
130(12)
4.6.1 Range of Heavy Charged Particles (p, d, t, α; 1 ≤ A ≤ 4)
130(5)
4.6.2 Range of Electrons and Positrons
135(4)
4.6.3 Transmission of Beta Particles
139(2)
4.6.4 Energy Loss after Traversing a Material of Thickness t < R
141(1)
4.7 Stopping Power and Range of Heavy Ions (Z > 2, A > 4)
142(7)
4.7.1 Introduction
142(1)
4.7.2 dE/dx Calculation
143(3)
4.7.3 Range of Heavy Ions
146(3)
4.8 Interactions of Photons with Matter
149(12)
4.8.1 Photoelectric Effect
149(1)
4.8.2 Compton Scattering or Compton Effect
150(3)
4.8.3 Pair Production
153(1)
4.8.4 Total Photon Attenuation Coefficient
154(3)
4.8.5 Photon Energy Absorption Coefficient
157(1)
4.8.6 Buildup Factors
158(3)
4.9 Interactions of Neutrons with Matter
161(12)
4.9.1 Types of Neutron Interactions
161(1)
4.9.1.1 Scattering
161(1)
4.9.1.2 Absorption
162(1)
4.9.2 Neutron Reaction Cross Sections
162(4)
4.9.3 Neutron Flux
166(2)
4.9.4 Interaction Rates of Polyenergetic Neutrons
168(1)
Problems
169(2)
References
171(1)
Further Reading
172(1)
Chapter 5 Gas-Filled Detectors
173(32)
5.1 Introduction
173(1)
5.2 Relationship between High Voltage and Charge Collected
174(2)
5.3 Various Types of Gas-Filled Detectors
176(2)
5.4 Ionization Chambers
178(5)
5.4.1 Pulse Formation in an Ionization Chamber
178(3)
5.4.2 Current Ionization Chambers
181(2)
5.5 Proportional Counters
183(7)
5.5.1 Charge Multiplication in Proportional Counters
183(3)
5.5.2 Pulse Shape of a Proportional Counter
186(1)
5.5.3 Change of Counting Rate with High Voltage: The High-Voltage Plateau
187(3)
5.6 Geiger-Muller Counters
190(1)
5.6.1 Operation of a GM Counter and Quenching of the Discharge
190(1)
5.6.2 Pulse Shape and Dead Time of a GM Counter
191(1)
5.7 Gas-Flow Detectors
191(4)
5.7.1 Long-Range Alpha Detector
194(1)
5.7.2 Internal Gas Counting
195(1)
5.8 Rate Meters
195(2)
5.9 General Comments about Construction of Gas-Filled Detectors
197(1)
5.9.1 Geometry
197(1)
5.9.2 Gases and Pressures Used
198(1)
5.9.3 Detector Window
198(1)
5.10 Various Applications of Gas-Filled Detectors
198(7)
Problems
202(1)
References
203(1)
Further Reading
204(1)
Chapter 6 Scintillation Detectors
205(24)
6.1 Introduction
205(1)
6.2 Inorganic (Crystal) Scintillators
206(5)
6.2.1 Mechanism of the Scintillation Process
206(2)
6.2.2 Time Dependence of Photon Emission
208(2)
6.2.3 Important Properties of Certain Inorganic Scintillators
210(1)
6.2.3.1 Nal(TI)
210(1)
6.2.3.2 Csl(TI)
210(1)
6.2.3.3 Csl(Na)
210(1)
6.2.3.4 CaF2(Eu)
210(1)
6.2.3.5 Lil(Eu)
210(1)
6.2.3.6 CeBr3
211(1)
6.2.3.7 LaBr3(Ce)
211(1)
6.2.3.8 Other Inorganic Scintillators
211(1)
6.2.4 Applications of Inorganic Scintillators
211(1)
6.3 Organic Scintillators
211(4)
6.3.1 Mechanism of the Scintillation Process
212(1)
6.3.2 Organic Crystal Scintillators
213(1)
6.3.3 Organic Liquid Scintillators
213(1)
6.3.4 Plastic Scintillators
214(1)
6.4 Gaseous Scintillators
215(1)
6.5 Relationship between Pulse Height and Energy and Type of Incident Particle
215(3)
6.5.1 Response of Inorganic Scintillators
215(1)
6.5.1.1 Photons
215(1)
6.5.1.2 Charged Particles
215(1)
6.5.1.3 Neutrons
216(1)
6.5.2 Response of Organic Scintillators
216(1)
6.5.2.1 Charged Particles
216(1)
6.5.2.2 Photons and Neutrons
217(1)
6.6 The Photomultiplier Tube
218(3)
6.6.1 General Description
218(2)
6.6.2 Electron Multiplication in a Photomultiplier
220(1)
6.6.3 Si Photomultiplier
221(1)
6.7 Assembly of a Scintillation Detector and the Role of Light Pipes
221(2)
6.8 Dead Time of Scintillation Detectors
223(1)
6.9 Sources of Background in a Scintillation Detector
223(1)
6.10 Phoswich Detector
224(5)
Problems
226(1)
References
226(2)
Further Reading
228(1)
Chapter 7 Semiconductor Detectors
229(28)
7.1 Introduction
229(1)
7.2 Electrical Classification of Solids
230(3)
7.2.1 Electronic States in Solids: Fermi Distribution Function
230(2)
7.2.2 Insulators
232(1)
7.2.3 Conductors
232(1)
7.3 Semiconductors
233(6)
7.3.1 Change of the Energy Gap with Temperature
234(1)
7.3.2 Conductivity of Semiconductors
234(3)
7.3.3 Extrinsic and Intrinsic Semiconductors: Role of Impurities
237(2)
7.4 The p--n Junction
239(3)
7.4.1 Formation of a p--n Junction
239(2)
7.4.2 The p--n Junction Operating as a Detector
241(1)
7.5 Different Types of Semiconductor Detectors
242(8)
7.5.1 Surface-Barrier Detectors
243(1)
7.5.2 Diffused-Junction Detectors
244(1)
7.5.3 Silicon Lithium-Drifted [ Si(Li)] Detectors
244(3)
7.5.4 Germanium Lithium-Drifted [ Ge(Li)] Detectors
247(1)
7.5.5 Germanium Detectors
248(1)
7.5.6 CdTe, CdZnTe, and Hgl2 Detectors
249(1)
7.6 Radiation Damage to Semiconductor Detectors
250(2)
7.7 THE SiPM
252(5)
Problems
253(1)
References
253(2)
Further Reading
255(2)
Chapter 8 Relative and Absolute Measurements
257(26)
8.1 Introduction
257(2)
8.2 Geometry Effects
259(8)
8.2.1 Effect of the Medium between Source and Detector
259(1)
8.2.2 Solid Angle: General Definition
259(2)
8.2.3 Solid Angle for a Point Isotropic Source and a Detector with a Circular Aperture
261(2)
8.2.4 Solid Angle for a Disk Source Parallel to a Detector with a Circular Aperture
263(1)
8.2.5 Solid Angle for a Point Isotropic Source and a Detector with a Rectangular Aperture
264(1)
8.2.6 Solid Angle for a Disk Source and a Detector with a Rectangular Aperture
265(1)
8.2.7 Solid Angle for Other Shapes
266(1)
8.2.8 The Monte Carlo Method Used for a Solid Angle Calculation
266(1)
8.3 Source Effects
267(4)
8.3.1 Source Self-Absorption Factor (/J
267(2)
8.3.2 Source Backscattering Factor (fb)
269(2)
8.4 Detector Effects
271(5)
8.4.1 Scattering and Absorption due to the Window of the Detector
271(1)
8.4.2 Detector Efficiency (ε)
272(1)
8.4.2.1 Effect of Density and Size of Detector Material
272(1)
8.4.2.2 Effect of Type and Energy of Radiation
273(1)
8.4.2.3 Effect of Electronics
273(1)
8.4.3 Determination of Detector Efficiency
273(3)
8.5 Relationship between Counting Rate and Source Strength
276(1)
8.6 Reference Materials for Relative and Absolute Measurements
277(6)
Problems
279(2)
References
281(1)
Further Reading
281(2)
Chapter 9 Introduction to Spectroscopy
283(20)
9.1 Introduction
283(1)
9.2 Definition of Energy Spectra
283(2)
9.3 Measurement of an Integral Spectrum with a Discriminator
285(1)
9.4 Measurement of a Differential Spectrum with a Single-Channel Analyzer
286(1)
9.5 Relationship between Pulse-Height Distribution and Energy Spectrum
286(1)
9.6 Energy Resolution of a Detection System
287(4)
9.6.1 Effect of Statistical Fluctuations: Fano Factor
288(1)
9.6.2 Effect of Electronic Noise on Energy Resolution
289(1)
9.6.3 Effect of Incomplete Charge Collection
290(1)
9.6.4 Total Width Γ
291(1)
9.7 Determination of the Energy Resolution: The Response Function
291(1)
9.8 Importance of Good Energy Resolution
292(1)
9.9 Brief Description of a Multichannel Analyzer
292(3)
9.10 Calibration of a Multichannel Analyzer
295(8)
Problems
299(2)
References
301(2)
Chapter 10 Electronics for Radiation Counting
303(30)
10.1 Introduction
303(1)
10.2 Resistance, Capacitance, Inductance, and Impedance
303(4)
10.3 Differentiating Circuit
307(1)
10.4 Integrating Circuit
308(2)
10.5 Delay Lines
310(1)
10.6 Pulse Shaping
311(1)
10.7 Timing
312(2)
10.7.1 Leading-Edge Timing Method
313(1)
10.7.2 Zero-Crossing Timing Method
313(1)
10.7.3 Constant-Fraction Timing Method
314(1)
10.7.4 Applications of Novel Timing Methods
314(1)
10.8 Coincidence-Anticoincidence Measurements
314(5)
10.9 Pulse-Shape Discrimination (PSD)
319(2)
10.10 Preamplifiers
321(1)
10.11 Amplifiers
322(2)
10.12 Analog-to-Digital Converters (ADC)
324(2)
10.13 Multiparameter Analyzers
326(2)
10.14 High Count Rates
328(1)
10.15 Digital Processing
328(1)
10.16 Data Manipulation
329(1)
10.17 International Atomic Energy Agency Nuclear Electronics Manuals
329(4)
Problems
330(1)
References
330(2)
Further Reading
332(1)
Chapter 11 Data Analysis Methods
333(30)
11.1 Introduction
333(1)
11.2 Curve Fitting
334(1)
11.3 Interpolation Schemes
335(3)
11.4 Least-Squares Fitting
338(5)
11.4.1 Least-Squares Fit for a Straight Line
340(1)
11.4.2 Least-Squares Fit for General Functions
341(2)
11.5 Folding and Unfolding
343(10)
11.5.1 Examples of Folding
345(3)
11.5.2 General Method of Unfolding
348(2)
11.5.3 An Iteration Method of Unfolding
350(1)
11.5.4 Least-Squares Unfolding
351(2)
11.6 Data Smoothing
353(2)
11.7 Quality Assurance and Quality Control
355(8)
11.7.1 Why Do Things Go Wrong and Why Do We Need QA and QC?
356(1)
11.7.2 Instrument Calibration versus Performance Tests
356(1)
11.7.3 Total Quality Management
357(2)
Problems
359(1)
References
360(1)
Further Reading
361(2)
Chapter 12 Photon (γ-Ray and X-Ray) Spectroscopy
363(42)
12.1 Introduction
363(1)
12.2 Modes of Energy Deposition in the Detector
363(6)
12.2.1 Energy Deposition by Photons with E < 1.022 MeV
364(2)
12.2.2 Energy Deposition by Photons with E > 1.022 MeV
366(3)
12.3 Efficiency of Χ-Ray and γ-Ray Detectors: Definitions
369(2)
12.4 Detection of Photons with Nal(TI) Scintillation Detectors
371(3)
12.4.1 Efficiency of Nal(TI) Detectors
372(2)
12.5 Detection of Gammas with Ge Detectors
374(15)
12.5.1 Efficiency of Ge Detectors
375(7)
12.5.2 Energy Resolution of Ge Detectors
382(2)
12.5.3 Analysis of Ge Detector Energy Spectra
384(4)
12.5.4 Timing Characteristics of the Pulse
388(1)
12.6 Detection of X-Rays with a Si(Li) Detector
389(2)
12.7 CdTe, CZT, Hgl2, LaBr (Ce3), and LaCI2 Detectors as Gamma Spectrometers
391(5)
12.8 Low-Level Gamma Ray Counting: Compton Suppression and Gamma-Gamma Coincidence
396(9)
12.8.1 Compton Suppression
396(2)
12.8.2 Gamma-Gamma Coincidence
398(2)
Problems
400(1)
References
401(2)
Further Reading
403(2)
Chapter 13 Charged-Particle Spectroscopy
405(26)
13.1 Introduction
405(1)
13.2 Energy Straggling
406(4)
13.3 Electron Spectroscopy
410(4)
13.3.1 Electron Backscattering
410(2)
13.3.2 Energy Resolution and Response Function of Electron Detectors
412(1)
13.3.3 Energy Calibration of Electron Spectrometers
413(1)
13.4 Alpha, Proton, Deuteron, and Triton Spectroscopy
414(1)
13.4.1 Energy Resolution and Response Function of Alpha Detectors
414(1)
13.4.2 Energy Calibration
415(1)
13.4.3 Source Preparation
415(1)
13.5 Heavy-Ion (Z > 2) Spectroscopy
415(5)
13.5.1 Pulse Height Defect [ PHD]
416(2)
13.5.2 Energy Calibration: The Schmitt Method
418(1)
13.5.3 Calibration Sources
418(2)
13.5.4 Fission Foil Preparation
420(1)
13.6 Time-of-Flight Spectrometer
420(2)
13.7 Detector Telescopes (E dE/dx Detectors)
422(1)
13.8 Position-Sensitive Detectors
423(2)
13.8.1 Position-Sensitive Semiconductor Detectors
423(1)
13.8.2 Multiwire Proportional Chambers
424(1)
13.9 Applications of Alpha Spectroscopy
425(6)
Problems
426(1)
References
427(2)
Further Reading
429(2)
Chapter 14 Neutron Detection and Spectroscopy
431(50)
14.1 Introduction
431(1)
14.2 Neutron Detection by (n, Charged Particle) Reaction
432(8)
14.2.1 BF3 Detector
432(5)
14.2.2 Boron-Lined Detectors
437(1)
14.2.3 6Li Detectors
438(1)
14.2.4 3He Detectors
438(2)
14.3 Fission Chambers
440(1)
14.4 Neutron Detection by Foil Activation
441(5)
14.4.1 Basic Equations
441(3)
14.4.2 Determination of the Neutron Flux by Counting the Foil Activity
444(2)
14.5 Measurement of a Neutron Energy Spectrum by Proton Recoil
446(9)
14.5.1 Differentiation Unfolding of Proton Recoil Spectra
448(1)
14.5.2 Proportional Counters Used as Fast-Neutron Spectrometers
449(3)
14.5.3 Organic Scintillators Used as Fast-Neutron Spectrometers
452(3)
14.6 Fast Neutron Detection
455(6)
14.6.1 Detection of Fast Neutrons Using Threshold Activation Reactions
455(4)
14.6.2 Detection of Fast Neutrons Using Inorganic Scintillators
459(2)
14.7 Neutron Energy Measurement with a Crystal Spectrometer
461(2)
14.8 Time-of-Flight (TOF) Method
463(3)
14.8.1 Neutron Velocity Selector (Neutron Chopper)
464(1)
14.8.2 Fast Neutron Beams
465(1)
14.9 Compensated Ion Chambers
466(1)
14.10 Self-Powered Neutron Detectors (SPND)
467(6)
14.10.1 SPNDs with Delayed Response
468(4)
14.10.2 SPNDs with Prompt Response
472(1)
14.11 Concluding Remarks
473(8)
Problems
475(2)
References
477(2)
Further Reading
479(2)
Chapter 15 Activation Analysis and Related Techniques
481(20)
15.1 Introduction
481(1)
15.2 Selection of the Optimum Nuclear Reaction
482(2)
15.3 Preparation of the Sample for Irradiation
484(1)
15.4 Sources of Radiation
485(2)
15.4.1 Sources of Neutrons
485(2)
15.4.2 Sources of Charged Particles
487(1)
15.4.3 Sources of Photons
487(1)
15.5 Irradiation of the Sample
487(2)
15.6 Counting of the Sample
489(1)
15.7 Analysis of the Results
489(2)
15.8 Sensitivity of Activation Analysis
491(2)
15.9 Interference Reactions
493(1)
15.10 Advantages and Disadvantages of the Activation Analysis Method
494(1)
15.11 Prompt Gamma Activation Analysis
494(1)
15.12 Neutron Depth Profile
495(1)
15.13 Neutron Radiography
495(1)
15.14 E-Learning Modules for Neutron Activation Analysis
496(5)
Problems
497(1)
References
498(1)
Further Reading
499(2)
Chapter 16 Health Physics Fundamentals
501(48)
16.1 Introduction
501(1)
16.2 Units of Exposure and Absorbed Dose
502(2)
16.3 Relative Biological Effectiveness: Dose Equivalent
504(3)
16.4 Dosimetry from Radiation External to the Body
507(8)
16.4.1 Dose Rate due to Charged Particles
507(2)
16.4.2 Dose Rate due to Photons
509(3)
16.4.3 Dose Rate due to Neutrons
512(3)
16.5 Dosimetry for Radiation Inside the Body
515(4)
16.5.1 Dose Rate from a Source of Charged Particles inside the Body
515(2)
16.5.2 Dose Rate from a Photon Source inside the Body
517(1)
16.5.3 Dose Rate from a Neutron Source inside the Body
518(1)
16.6 Internal Dose Rate Time Dependence: Biological Half-Life
519(4)
16.7 Biological Effects of Radiation
523(5)
16.7.1 Basic Description of the Human Cell
523(1)
16.7.2 Categories of Biological Effects from Ionizing Radiation
524(1)
16.7.3 Nonstochastic (Deterministic) Biological Effects from Ionizing Radiation
525(1)
16.7.4 Stochastic (Probabilistic) Biological Effects from Ionizing Radiation
525(3)
16.8 Radiation Protection Guides and Exposure Limits
528(3)
16.8.1 Various Dose Equations Used in Setting Exposure Limits
528(2)
16.8.2 Occupational Dose Limits for Adults
530(1)
16.9 Health Physics Instruments
531(8)
16.9.1 Survey Instruments
532(1)
16.9.2 Thermoluminescent Dosimeters
533(2)
16.9.3 Optically Stimulated Luminescence Dosimetry
535(1)
16.9.4 Bonner Sphere (Rem Ball)
535(2)
16.9.5 Neutron Bubble Detector
537(1)
16.9.6 Pocket Ionization Dosimeter
538(1)
16.9.7 Electronic Personal Dosimeter
538(1)
16.9.8 Foil Activation Used for Neutron Dosimetry
539(1)
16.10 Proper Use of Radiation
539(2)
16.11 Health Physics within Nuclear Power Plants and Radiological Facilities
541(2)
16.11.1 Active Personal Dosimeters
541(1)
16.11.2 Continuous Air Monitors (CAM) and Continuous Air Particulate Monitors (CAPM)
542(1)
16.11.3 Area Monitors and Environmental Monitoring
542(1)
16.11.4 Foot and Hand Surface Contamination Monitors
542(1)
16.11.5 Whole-Body Counters
543(1)
16.12 Concluding Remark
543(6)
Problems
544(2)
References
546(2)
Further Reading
548(1)
Chapter 17 Nuclear Forensics
549(12)
17.1 Introduction
549(1)
17.2 Nuclear Forensics Instrumentation
550(5)
17.2.1 Passive Detection of Nuclear Materials
551(1)
17.2.2 Interrogation Radiation Detection Systems
552(1)
17.2.3 Alpha Spectrometry
553(1)
17.2.4 Gamma Ray Spectrometry-Coincidence Techniques
553(2)
17.3 Chronometry
555(1)
17.4 Unmanned Aerial Vehicles Used for Radiation Detection
556(5)
Problems
558(1)
References
558(2)
Further Reading
560(1)
Chapter 18 Nuclear Medicine Instrumentation
561(10)
18.1 Introduction
561(2)
18.2 Areas of Nuclear Medicine
563(1)
18.3 Imaging Technologies
564(1)
18.3.1 Computed Tomography (CT)
564(1)
18.3.2 Single-Photon Emission Computed Tomography (SPECT)
564(1)
18.3.3 Positron Emission Tomography (PET)
564(1)
18.4 Dose Calibrator
565(1)
18.5 Novel Radiation Detection Systems in Nuclear Medicine
565(1)
18.6 Quality Control Processes for Radiopharmaceuticals
566(1)
18.7 Commercially Available Nuclear Medicine Imaging Systems
567(4)
Problems
568(1)
References
568(1)
Further Reading
569(2)
Appendix A Useful Constants and Conversion Factors 571(2)
Appendix B Atomic Masses and Other Properties of Isotopes 573(4)
Appendix C Alpha, Beta, and Gamma Sources Commonly Used 577(4)
Appendix D Tables of Photon Attenuation Coefficients 581(6)
Appendix E Table of Buildup Factor Constants 587(2)
Appendix F Table Gamma-Ray Attenuation Coefficients and Buildup Factors for Engineering Materials from the American National Standard ANSI/ANS-6.4.3--1991 589(6)
Index 595
Nicholas Tsoulfanidis is a nuclear engineering professor emeritus of the Missouri University of Science & Technology and an adjunct professor at the University of Nevada, Reno.

Sheldon Landsberger is a professor in the Nuclear and Radiation Engineering Program in the Walker Department of Mechanical Engineering at the University of Texas at Austin, where he currently holds the Robert B. Trull Chair in Engineering in the Cockrell School of Engineering.