Atnaujinkite slapukų nuostatas

Mechanics of Failure Mechanisms in Structures 2012 ed. [Kietas viršelis]

  • Formatas: Hardback, 97 pages, aukštis x plotis: 235x155 mm, weight: 336 g, 5 Illustrations, color; 37 Illustrations, black and white; IX, 97 p. 42 illus., 5 illus. in color., 1 Hardback
  • Serija: Solid Mechanics and Its Applications 187
  • Išleidimo metai: 27-Apr-2012
  • Leidėjas: Springer
  • ISBN-10: 9400742517
  • ISBN-13: 9789400742512
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 97 pages, aukštis x plotis: 235x155 mm, weight: 336 g, 5 Illustrations, color; 37 Illustrations, black and white; IX, 97 p. 42 illus., 5 illus. in color., 1 Hardback
  • Serija: Solid Mechanics and Its Applications 187
  • Išleidimo metai: 27-Apr-2012
  • Leidėjas: Springer
  • ISBN-10: 9400742517
  • ISBN-13: 9789400742512
Kitos knygos pagal šią temą:
This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthermore, the book reviews a large number of experimental results on these failure mechanisms.

The book will benefit structural and materials engineers and researchers seeking a birds-eye view of possible failure mechanisms in structures along with the associated failure and structural mechanics.
1 Stability in Metallic Elements
1(12)
1.1 Time Independent Tensile Loading
1(3)
1.2 Tensile Creep Rupture
4(1)
1.3 Time Independent Compressive Loading
4(1)
1.4 Time Dependent Compressive Loading
5(1)
1.5 Static Buckling Experiments
6(2)
1.6 Three Dimensional Problems
8(1)
1.7 Dynamic Stability
9(1)
1.7.1 A Plate Problem
9(1)
1.7.2 A Tensioned Bar Under Eccentric Loading
10(1)
References
10(3)
2 Fracture Mechanics
13(6)
2.1 Introduction
13(2)
2.2 Fracture in Metals with Toughness Gradients
15(1)
2.3 Metallurgical Embrittlement Effects
15(2)
References
17(2)
3 Fatigue in Metals
19(22)
3.1 Introduction
19(2)
3.2 The Stress-Life Strategy
21(7)
3.2.1 The Stress-Life Diagram (S-N Curve)
22(1)
3.2.2 Mean Stress Effects -- The Goodman Relationship
23(2)
3.2.3 Variable Amplitude Loading -- The Palmgren-Miner Rule
25(1)
3.2.4 Fatigue Design Approaches: Safe-Life, Fail-Safe and Damage Tolerance
25(3)
3.3 Fatigue Crack Growth
28(2)
3.4 Crack Initiation Mechanisms
30(1)
3.5 Multi-site Fatigue Cracking
30(4)
3.5.1 Multiple Site Cracking Test Results
31(2)
3.5.2 Transition from Small to Large Fatigue Cracks
33(1)
3.6 Variable Amplitude Loading
34(2)
3.6.1 Tensile Overloads
35(1)
3.6.2 Compressive Overloads
35(1)
3.6.3 Load Spectra Analyses
35(1)
3.7 Temperature
36(1)
3.8 Corrosion
37(1)
3.9 Creep and Fatigue Interaction
37(1)
References
38(3)
4 Ceramic Materials
41(4)
4.1 Introduction
41(1)
4.2 Ceramic Matrix Composites
42(1)
4.2.1 Fabrication
42(1)
4.2.2 Fracture and Fatigue Strengths
42(1)
References
43(2)
5 Polymeric Materials
45(10)
5.1 Fatigue Failure
45(5)
5.1.1 Matrix Cracking
45(2)
5.1.2 Delamination
47(2)
5.1.3 Fiber Breakage and Fiber-Matrix Interfacial Debonding
49(1)
5.1.4 S-N Relations
49(1)
5.2 Environmental Effects on Composites
50(4)
References
54(1)
6 Metallic Matrix Composites
55(4)
6.1 Introduction
55(1)
6.2 Experimental and Analytical Results
56(2)
References
58(1)
7 Biomaterials
59(4)
7.1 Introduction
59(1)
7.2 Prosthetic Heart Valves
59(1)
7.3 Prosthetic Hip Joints
60(1)
References
61(2)
8 Failure in Structural Systems
63(32)
8.1 Truss Failure
63(12)
8.1.1 An Isostatic Truss Example
65(1)
8.1.2 A Hyperstatic Truss Example
66(2)
8.1.3 Post-Yield Behavior of the Hyperstatic Truss
68(2)
8.1.4 Buckling of Compression Members in Hyperstatic Truss
70(2)
8.1.5 Truss Deflections
72(3)
8.2 Beam Failure
75(11)
8.2.1 Beam Theory
76(2)
8.2.2 Isostatic Beam Example
78(2)
8.2.3 Hyperstatic Beam Example
80(3)
8.2.4 Deflection Analysis
83(3)
8.3 Creep Buckling Failure
86(7)
8.3.1 Background
87(1)
8.3.2 Restrained Column Model
87(4)
8.3.3 Numerical Results
91(2)
8.4 Discussion
93(1)
References
94(1)
Index 95