Atnaujinkite slapukų nuostatas
  • Formatas: 210 pages
  • Išleidimo metai: 10-Aug-2017
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351655682

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book offers unique coverage of the mechanical properties of nano- and micro-dispersed magnetic fluids. Magnetic fluids are artificially created materials that do not exist in the nature. Researchers developing materials and devices are keenly interested in their "mutually exclusive" properties including fluidity, compressibility, and the ability to magnetize up to saturation in relatively small magnetic fields. Applications of micro- and nanodispersed magnetic fluids include magnetic-seals, magnetically operated grease in friction units and supports, separators of non-magnetic materials, oil skimmers and separators, sensors of acceleration and angle, and gap fillers in loudspeakers.

Foreword ix
Main notations and abbreviations xi
Introduction 1(4)
1 Introduction to nanotechnology and microtechnology
5(16)
1.1 Main concepts and definitions used in nano- and micro-technologies
5(2)
1.2 Position of the nano- and micro-objects on the scale of the sizes investigated at the present time
7(2)
1.3 Prefixes to the units of the SI system
9(1)
1.4 Influence of the dimensional effect on the physical properties of materials
10(1)
1.5 The history of development of nanotechnologies and nano-objects
11(10)
2 The physical model of the continuous medium
21(18)
2.1 The continuity equation
21(2)
2.2 The equation of motion
23(3)
2.3 The equation of the mechanical state
26(3)
2.4 The elasticity coefficient
29(3)
2.5 The ponderomotive force
32(2)
2.6 The magnetic pressure jump
34(1)
2.7 The mechanics of `slipping' of nano- and microparticles in accelerated movement of the suspension
35(4)
3 Measurement of magnetic parameters of nano- and microdispersed media
39(9)
3.1 The magnetic field
39(2)
3.2 Description of experimental equipment and the method forgetting the magnetisation curve
41(2)
3.3 The magnetisation curve
43(2)
3.4 Calculation of the `maximum' and `minimum' magnetic moments of nanoparticles and their diameters
45(3)
4 The magnetocaloric effect in a nanodispersed magnetic system
48(6)
5 Effect of the ponderomotive force
54(39)
5.1 Experimental confirmation of the ponderomotive mechanism of electromagnetic excitation of elastic oscillations in a magnetic fluid
54(4)
5.2 The ponderomotive mechanism of excitation of oscillations in a cylindrical resonator with a magnetic fluid
58(8)
5.3 The Q-factor of a magnetic fluid film -- the emitter of elastic oscillations
66(7)
5.4 Excitation of sound in an unlimited magnetic fluid
73(3)
5.5 The coefficient of ponderomotive elasticity of the magnetic fluid membrane
76(2)
5.6 Resonance frequency of oscillations of the magnetic fluid seal
78(3)
5.7 Experimental method for determining the coefficient of ponderomotive elasticity
81(1)
5.8 A magnetic fluid chain with the ponderomotive type elasticity
82(3)
5.9 Rotational oscillations of a linear cluster in a magnetic field
85(2)
5.10 Oscillations of the form of the magnetic fluid droplet
87(1)
5.11 Simple mechanism of volume magnetostriction
88(2)
5.12 Magnetic levitation
90(3)
6 Comparison of equilibrium magnetisation of a nanodispersed magnetic fluid and a microdispersed ferrosuspension
93(7)
7 Rheological properties of suspensions
100(14)
7.1 Newtonian and non-Newtonian fluids
100(4)
7.2 Magnetorheological effect
104(3)
7.3 Physical nature of the magnetorheological effect
107(7)
7.3.1 Role of the structure formation of ferrosuspensions in the formation of magnetic susceptibility
107(5)
7.3.2 Nature of non-Newtonian viscosity in a ferrosuspension
112(2)
8 Mechanical and magnetic properties of nanodispersed systems
114(16)
8.1 Equation of the magnetic state of a superparamagnetic
114(6)
8.2 Diffusion of nanoparticles in a fluid matrix
120(3)
8.3 Magnetodiffusion and barodiffusion in nano- and microdispersed media
123(1)
8.4 Aggregative stability of the disperse system of magnetic nanoparticles
124(6)
9 Additive model of the elasticity of nano- and microdispersed systems
130(6)
9.1 The additive model of the elasticity of nano- and microdispersed systems taking interphase heat exchange into account
130(3)
9.2 Compressibility of a magnetite--water magnetic fluid
133(3)
10 `Suspending' a magnetic fluid in a pipe to investigate its rheological properties
136(13)
10.1 The column of the magnetic fluid in a pipe as an inertia --viscous element of the oscillatory system
136(6)
10.2 Rheology of the magnetic fluid with anisotropic properties
142(7)
11 Kinetic and strength properties of a magnetic fluid membrane
149(10)
12 The cavitation model of the rupture--restoration of the magnetic fluid membrane
159(6)
13 Methods for producing magnetic fluids and ferrosuspensions
165(18)
13.1 The production of magnetic fluids with different disperse phases
168(5)
13.2 The method of producing magnetite and magnetic fluids on transformer oil
173(2)
13.3 Laboratory equipment for producing magnetic fluids by chemical condensation
175(2)
13.4 Selection of the dispersion medium
177(4)
13.5 Production of magnetic fluids with microdroplet aggregates
181(2)
14 Applications of nano- and microdispersed media
183(10)
14.1 Applications of ferrosuspensions
183(2)
14.2 Using nanodispersed magnetic fluids in science and technology
185(8)
Conclusions 193(1)
References 194(2)
Index 196
Vyacheslav Mikhailovich Polunin has been working in the Physics Department of Southwest State University in Kursk (Russia) for 40 years: as a senior lecturer, reader, and currently heads the department. He earned his PhD in physics from the Leningrad State University in Saint Petersburg, Russia. Dr. Polunins research interests include molecular physics, physical acoustics, and magnetohydrodynamics. He is also the author or co-author of nearly 350 scientific publications in Russian national science journals and many European countries. Dr. Polunin holds 15 authors certificates and patents.