Atnaujinkite slapukų nuostatas

El. knyga: Mechanics and Thermodynamics

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This introduction to classical mechanics and thermodynamics provides an accessible and clear treatment of the fundamentals. Starting with particle mechanics and an early introduction to special relativity this textbooks enables the reader to understand the basics in mechanics. The text is written from the experimental physics point of view, giving numerous real life examples and applications of classical mechanics in technology. This highly motivating presentation deepens the knowledge in a very accessible way. The second part of the text gives a concise introduction to rotational motion, an expansion to rigid bodies, fluids and gases. Finally, an extensive chapter on thermodynamics and a short introduction to nonlinear dynamics with some instructive examples intensify the knowledge of more advanced topics. Numerous problems with detailed solutions are perfect for self study.

Recenzijos

This huge volume is intended as an introductory experimental physics course, devoted to various aspects of mechanics and thermodynamics. Author may prove attractive to the mathematically oriented audience as well (including not only students but professional scholars as well). Each chapter is followed by a list of references that may enhance the understanding of topics discussed. Solutions to all of them are collected in the special chapter. (Piotr Garbaczewski, zbMATH 1364.00024, 2017)

1 Introduction and Survey
1(38)
1.1 The Importance of Experiments
2(1)
1.2 The Concept of Models in Physics
3(2)
1.3 Short Historical Review
5(6)
1.3.1 The Natural Philosophy in Ancient Times
5(2)
1.3.2 The Development of Classical Physics
7(3)
1.3.3 Modern Physics
10(1)
1.4 The Present Conception of Our World
11(3)
1.5 Relations Between Physics and Other Sciences
14(2)
1.5.1 Biophysics and Medical Physics
14(1)
1.5.2 Astrophysics
15(1)
1.5.3 Geophysics and Meteorology
15(1)
1.5.4 Physics and Technology
15(1)
1.5.5 Physics and Philosophy
16(1)
1.6 The Basic Units in Physics, Their Standards and Measuring Techniques
16(10)
1.6.1 Length Units
17(2)
1.6.2 Measuring Techniques for Lengths
19(1)
1.6.3 Time-Units
20(3)
1.6.4 How to measure Times
23(1)
1.6.5 Mass Units and Their Measurement
23(1)
1.6.6 Molar Quantity Unit
24(1)
1.6.7 Temperature Unit
24(1)
1.6.8 Unit of the Electric Current
25(1)
1.6.9 Unit of Luminous Intensity
25(1)
1.6.10 Unit of Angle
25(1)
1.7 Systems of Units
26(1)
1.8 Accuracy and Precision; Measurement Uncertainties and Errors
27(12)
1.8.1 Systematic Errors
27(1)
1.8.2 Statistical Errors, Distribution of Experimental Values, Mean Values
27(2)
1.8.3 Variance and its Measure
29(1)
1.8.4 Error Distribution Law
29(2)
1.8.5 Error Propagation
31(1)
1.8.6 Equalization Calculus
32(2)
Summary
34(1)
Problems
35(1)
References
35(4)
2 Mechanics of a Point Mass
39(42)
2.1 The Model of the Point Mass; Trajectories
40(1)
2.2 Velocity and Acceleration
41(1)
2.3 Uniformly Accelerated Motion
42(2)
2.3.1 The Free Fall
43(1)
2.3.2 Projectile Motion
43(1)
2.4 Motions with Non-Constant Acceleration
44(3)
2.4.1 Uniform Circular Motion
44(1)
2.4.2 Motions on Trajectories with Arbitrary Curvature
45(2)
2.5 Forces
47(4)
2.5.1 Forces as Vectors; Addition of Forces
47(1)
2.5.2 Force-Fields
48(2)
2.5.3 Measurements of Forces; Discussion of the Force Concept
50(1)
2.6 The Basic Equations of Mechanics
51(5)
2.6.1 The Newtonian Axioms
51(1)
2.6.2 Inertial and Gravitational Mass
52(1)
2.6.3 The Equation of Motion of a Particle in Arbitrary Force Fields
53(3)
2.7 Energy Conservation Law of Mechanics
56(7)
2.7.1 Work and Power
56(2)
2.7.2 Path-Independent Work; Conservative Force-Fields
58(1)
2.7.3 Potential Energy
59(2)
2.7.4 Energy Conservation Law in Mechanics
61(1)
2.7.5 Relation Between Force Field and Potential
62(1)
2.8 Angular Momentum and Torque
63(1)
2.9 Gravitation and the Planetary Motions
64(17)
2.9.1 Kepler's Laws
64(2)
2.9.2 Newton's Law of Gravity
66(1)
2.9.3 Planetary Orbits
66(2)
2.9.4 The Effective Potential
68(1)
2.9.5 Gravitational Field of Extended Bodies
69(2)
2.9.6 Measurements of the Gravitational Constant G
71(1)
2.9.7 Testing Newton's Law of Gravity
72(2)
2.9.8 Experimental Determination of the Earth Acceleration g
74(2)
Summary
76(1)
Problems
77(2)
References
79(2)
3 Moving Coordinate Systems and Special Relativity
81(22)
3.1 Relative Motion
82(1)
3.2 Inertial Systems and Galilei-Transformations
82(1)
3.3 Accelerated Systems; Inertial Forces
83(6)
3.3.1 Rectilinear Accelerated Systems
83(2)
3.3.2 Rotating Systems
85(1)
3.3.3 Centrifugal- and Coriolis-Forces
86(3)
3.3.4 Summary
89(1)
3.4 The Constancy of the Velocity of Light
89(1)
3.5 Lorentz-Transformations
90(2)
3.6 Theory of Special Relativity
92(11)
3.6.1 The Problem of Simultaneity
92(1)
3.6.2 Minkowski-Diagram
93(1)
3.6.3 Lenght Scales
93(1)
3.6.4 Lorentz-Contraction of Lengths
94(2)
3.6.5 Time Dilatation
96(1)
3.6.6 The Twin-Paradox
97(2)
3.6.7 Space-time Events and Causality
99(1)
Summary
100(1)
Problems
100(1)
References
101(2)
4 Systems of Point Masses; Collisions
103(26)
4.1 Fundamentals
104(3)
4.1.1 Centre of Mass
104(1)
4.1.2 Reduced Mass
105(1)
4.1.3 Angular Momentum of a System of Particles
105(2)
4.2 Collisions Between Two Particles
107(8)
4.2.1 Basic Equations
108(1)
4.2.2 Elastic Collisions in the Lab-System
109(2)
4.2.3 Elastic Collisions in the Centre-of Mass system
111(2)
4.2.4 Inelastic Collisions
113(1)
4.2.5 Newton-Diagrams
114(1)
4.3 What Do We Learn from the Investigation of Collisions?
115(4)
4.3.1 Scattering in a Spherical Symmetric Potential
115(3)
4.3.2 Reactive Collisions
118(1)
4.4 Collisions at Relativistic Energies
119(4)
4.4.1 Relativistic Mass Increase
119(1)
4.4.2 Force and Relativistic Momentum
120(1)
4.4.3 The Relativistic Energy
121(1)
4.4.4 Inelastic Collisions at relativistic Energies
122(1)
4.4.5 Relativistic Formulation of Energy Conservation
122(1)
4.5 Conservation Laws
123(6)
4.5.1 Conservation of Momentum
123(1)
4.5.2 Energy Conservation
124(1)
4.5.3 Conservation of Angular Momentum
124(1)
4.5.4 Conservation Laws and Symmetries
124(1)
Summary
125(1)
Problems
126(1)
References
127(2)
5 Dynamics of rigid Bodies
129(24)
5.1 The Model of a Rigid Body
130(1)
5.2 Center of Mass
130(1)
5.3 Motion of a Rigid Body
131(1)
5.4 Forces and Couple of Forces
132(1)
5.5 Rotational Inertia and Rotational Energy
133(3)
5.5.1 The Parallel Axis Theorem (Steiner's Theorem)
134(2)
5.6 Equation of Motion for the Rotation of a Rigid Body
136(3)
5.6.1 Rotation About an Axis for a Constant Torque
137(2)
5.6.2 Measurements of rotational inertia; Rotary Oscillations About a Fixed Axis
139(1)
5.6.3 Comparison Between Translation and Rotation
139(1)
5.7 Rotation About Free Axes; Spinning Top
139(10)
5.7.1 Inertial Tensor and Inertial Ellipsoid
140(1)
5.7.2 Principal Moments of Inertia
141(2)
5.7.3 Free Rotational axes
143(1)
5.7.4 Euler's Equations
144(1)
5.7.5 The Torque-free Symmetric Top
145(2)
5.7.6 Precession of the Symmetric Top
147(1)
5.7.7 Superposition of Nutation and Precession
148(1)
5.8 The Earth as Symmetric Top
149(4)
Summary
151(1)
Problems
151(1)
References
152(1)
6 Real Solid and Liquid Bodies
153(30)
6.1 Atomic Model of the Different Aggregate States
154(1)
6.2 Deformable Solid Bodies
155(7)
6.2.1 Hooke's Law
156(1)
6.2.2 Transverse Contraction
157(1)
6.2.3 Shearing and Torsion Module
158(1)
6.2.4 Bending of a Balk
159(2)
6.2.5 Elastic Hysteresis; Energy of Deformation
161(1)
6.2.6 The Hardness of a Solid Body
162(1)
6.3 Static Liquids; Hydrostatics
162(4)
6.3.1 Free Displacement and Surfaces of Liquids
162(1)
6.3.2 Static Pressure in a Liquid
163(2)
6.3.3 Buoyancy and Floatage
165(1)
6.4 Phenomena at Liquid Surfaces
166(5)
6.4.1 Surface Tension
166(2)
6.4.2 Interfaces and Adhesion Tension
168(2)
6.4.3 Capillarity
170(1)
6.4.4 Summary of Section 6.4
171(1)
6.5 Friction Between Solid Bodies
171(3)
6.5.1 Static Friction
171(1)
6.5.2 Sliding Friction
172(1)
6.5.3 Rolling Friction
173(1)
6.5.4 Significance of Friction for Technology
174(1)
6.6 The Earth as Deformable Body
174(9)
6.6.1 Ellipticity of the Rotating Earth
175(1)
6.6.2 Tidal Deformations
175(3)
6.6.3 Consequences of the Tides
178(1)
6.6.4 Measurements of the Earth Deformation
179(1)
Summary
180(1)
Problems
181(1)
References
181(2)
7 Gases
183(26)
7.1 Macroscopic Model
184(1)
7.2 Atmospheric Pressure and Barometric Formula
185(3)
7.3 Kinetic Gas Theory
188(8)
7.3.1 The Model of the Ideal Gas
188(1)
7.3.2 Basic Equations of the Kinetic Gas Theory
189(1)
7.3.3 Mean Kinetic Energy and Absolute Temperature
190(1)
7.3.4 Distribution Function
190(1)
7.3.5 Maxwell-Boltzmann Velocity Distribution
191(4)
7.3.6 Collision Cross Section and Mean Free Path Length
195(1)
7.4 Experimental Proof of the Kinetic Gas Theory
196(2)
7.4.1 Molecular Beams
196(2)
7.5 Transport Phenomena in Gases
198(6)
7.5.1 Diffusion
198(2)
7.5.2 Brownian Motion
200(1)
7.5.3 Heat Conduction in Gases
201(1)
7.5.4 Viscosity of Gases
202(1)
7.5.5 Summary of Transport Phenomena
203(1)
7.6 The Atmosphere of the Earth
204(5)
Summary
206(1)
Problems
207(1)
References
208(1)
8 Liquids and Gases in Motion; Fluid Dynamics
209(28)
8.1 Basic Definitions and Types of Fluid Flow
210(2)
8.2 Euler Equation for Ideal Liquids
212(1)
8.3 Continuity Equation
212(1)
8.4 Bernoulli Equation
213(3)
8.5 Laminar Flow
216(4)
8.5.1 Internal Friction
216(2)
8.5.2 Laminar Flow Between Two Parallel Walls
218(1)
8.5.3 Laminar Flows in Tubes
219(1)
8.5.4 Stokes Law, Falling Ball Viscometer
220(1)
8.6 Navier-Stokes Equation
220(6)
8.6.1 Vortices and Circulation
221(1)
8.6.2 Helmholtz Vorticity Theorems
222(1)
8.6.3 The Formation of Vortices
223(1)
8.6.4 Turbulent Flows; Flow Resistance
224(2)
8.7 Aerodynamics
226(2)
8.7.1 The Aerodynamical Buoyancy
226(1)
8.7.2 Relation between Dynamical and Flow Resistance
227(1)
8.7.3 Forces on a flying Plane
228(1)
8.8 Similarity Laws; Reynolds' Number
228(1)
8.9 Usage of Wind Energy
229(8)
Summary
233(1)
Problems
234(1)
References
235(2)
9 Vacuum Physics
237(16)
9.1 Fundamentals and Basic Concepts
238(3)
9.1.1 The Different Vacuum Ranges
238(1)
9.1.2 Influence of the Molecules at the Walls
239(1)
9.1.3 Pumping Speed and Suction Capacity of Vacuum Pumps
239(1)
9.1.4 Flow Conductance of Vacuum Pipes
240(1)
9.1.5 Accessible Final Pressure
241(1)
9.2 Generation of Vacuum
241(6)
9.2.1 Mechanical Pumps
242(2)
9.2.2 Diffusion Pumps
244(2)
9.2.3 Cryo- and Sorption-Pumps; Ion-Getter Pumps
246(1)
9.3 Measurement of Low Pressures
247(6)
9.3.1 Liquid Manometers
248(1)
9.3.2 Membrane Manometer
248(1)
9.3.3 Heat Conduction Manometers
249(1)
9.3.4 Ionization Gauge and Penning Vacuum Meter
249(1)
9.3.5 Rotating Ball Vacuum Gauge
250(1)
Summary
251(1)
Problems
251(1)
References
252(1)
10 Thermodynamics
253(68)
10.1 Temperature and Amount of Heat
254(12)
10.1.1 Temperature Measurements, Thermometer, and Temperature Scales
254(2)
10.1.2 Thermal Expansion of Liquids and Solids
256(2)
10.1.3 Thermal Expansion of Gases; Gas Thermometer
258(1)
10.1.4 Absolute Temperature Scale
259(1)
10.1.5 Amount of Heat and Specific Heat Capacity
260(1)
10.1.6 Molar Volume and Avogadro Constant
261(1)
10.1.7 Internal Energy and Molar Heat Capacity of Ideal Gases
261(1)
10.1.8 Specific Heat of a Gas at Constant Pressure
262(1)
10.1.9 Molecular Explanation of the Specific Heat
263(1)
10.1.10 Specific Heat Capacity of Solids
264(1)
10.1.11 Fusion Heat and Heat of Evaporation
265(1)
10.2 Heat Transport
266(13)
10.2.1 Convection
266(1)
10.2.2 Heat Conduction
267(4)
10.2.3 The Heat Pipe
271(1)
10.2.4 Methods of Thermal Insulation
271(2)
10.2.5 Thermal Radiation
273(6)
10.3 The Three Laws of Thermodynamics
279(20)
10.3.1 Thermodynamic Variables
279(1)
10.3.2 The First Law of Thermodynamics
280(1)
10.3.3 Special Processes as Examples of the First Law of Thermodynamics
281(1)
10.3.4 The Second Law of Thermodynamics
282(1)
10.3.5 The Carnot Cycle
283(3)
10.3.6 Equivalent Formulations of the Second Law
286(1)
10.3.7 Entropy
286(4)
10.3.8 Reversible and Irreversible Processes
290(1)
10.3.9 Free Energy and Enthalpy
291(1)
10.3.10 Chemical Reactions
292(1)
10.3.11 Thermodynamic Potentials; Relations Between Thermodynamic Variables
292(1)
10.3.12 Equilibrium States
293(1)
10.3.13 The Third Law of Thermodynamics
294(1)
10.3.14 Thermodynamic Engines
295(4)
10.4 Thermodynamics of Real Gases and Liquids
299(10)
10.4.1 Van der Waals Equation of State
299(2)
10.4.2 Matter in Different Aggregation States
301(6)
10.4.3 Solutions and Mixed States
307(2)
10.5 Comparison of the Different Changes of State
309(1)
10.6 Energy Sources and Energy Conversion
309(12)
10.6.1 Hydro-Electric Power Plants
312(1)
10.6.2 Tidal Power Stations
312(1)
10.6.3 Wave Power Stations
313(1)
10.6.4 Geothermal Power Plants
313(1)
10.6.5 Solar-Thermal Power Stations
314(1)
10.6.6 Photovoltaic Power Stations
315(1)
10.6.7 Bio-Energy
316(1)
10.6.8 Energy Storage
316(1)
Summary
317(1)
Problems
318(1)
References
319(2)
11 Mechanical Oscillations and Waves
321(60)
11.1 The Free Undamped Oscillator
322(1)
11.2 Mathematical Notations of Oscillations
323(1)
11.3 Superposition of Oscillations
324(4)
11.3.1 One-Dimensional Superposition
324(3)
11.3.2 Two-dimensional Superposition; Lissajous-Figures
327(1)
11.4 The Free Damped Oscillator
328(2)
11.4.1 y < ω0, i. e. weak damping
329(1)
11.4.2 y > ωa0, i- e. strong Damping
329(1)
11.4.3 y = ω0 (aperiodic limiting case)
330(1)
11.5 Forced Oscillations
330(3)
11.5.1 Stationary State
331(2)
11.5.2 Transient State
333(1)
11.6 Energy Balance for the Oscillation of a Point Mass
333(1)
11.7 Parametric Oscillator
334(1)
11.8 Coupled Oscillators
335(4)
11.8.1 Coupled Spring Pendulums
335(3)
11.8.2 Forced Oscillations of Two Coupled Oscillators
338(1)
11.8.3 Normal Vibrations
339(1)
11.9 Mechanical Waves
339(13)
11.9.1 Different Representations of Harmonic Plane Waves
340(1)
11.9.2 Summary
341(1)
11.9.3 General Description of Arbitrary Waves; Wave-Equation
341(1)
11.9.4 Different Types of Waves
342(2)
11.9.5 Propagation of Waves in Different Media
344(6)
11.9.6 Energy Density and Energy Transport in a Wave
350(1)
11.9.7 Dispersion; Phase- and Group-Velocity
350(2)
11.10 Superposition of Waves; Interference
352(2)
11.10.1 Coherence and Interference
352(1)
11.10.2 Superposition of Two Harmonic Waves
353(1)
11.11 Diffraction, Reflection and Refraction of Waves
354(5)
11.11.1 Huygens's Principle
355(1)
11.11.2 Diffraction at Apertures
356(2)
11.11.3 Summary
358(1)
11.11.4 Reflection and Refraction of Waves
358(1)
11.12 Standing Waves
359(4)
11.12.1 One-Dimensional Standing Waves
359(1)
11.12.2 Experimental Demonstrations of Standing Waves
360(1)
11.12.3 Two-dimensional Resonances of Vibrating Membranes
361(2)
11.13 Waves Generated by Moving Sources
363(3)
11.13.1 Doppler-Effect
363(1)
11.13.2 Wave Fronts for Moving Sources
364(1)
11.13.3 Shockwaves
365(1)
11.14 Acoustics
366(6)
11.14.1 Definitions
366(1)
11.14.2 Pressure Amplitude and Energy Density of Acoustic Waves
367(1)
11.14.3 Sound Generators
368(1)
11.14.4 Sound-Detectors
368(1)
11.14.5 Ultrasound
369(1)
11.14.6 Applications of Ultrasound
370(1)
11.14.7 Techniques of Ultrasonic Diagnosis
371(1)
11.15 Physics of Musical Instruments
372(9)
11.15.1 Classification of Musical Instruments
372(1)
11.15.2 Chords, Musical Scale and Tuning
372(2)
11.15.3 Physics of the Violin
374(1)
11.15.4 Physics of the Piano
375(1)
Summary
376(2)
Problems
378(1)
References
379(2)
12 Nonlinear Dynamics and Chaos
381(20)
12.1 Stability of Dynamical Systems
383(3)
12.2 Logistic Growth Law; Feigenbaum-Diagram
386(2)
12.3 Parametric Oscillator
388(1)
12.4 Population Explosion
389(1)
12.5 Systems with Delayed Feedback
390(1)
12.6 Self-Similarity
391(1)
12.7 Fractals
392(1)
12.8 Mandelbrot Sets
393(4)
12.9 Consequences for Our Comprehension of the Real World
397(4)
Summary
397(1)
Problems
398(1)
References
399(2)
13 Supplement
401(12)
13.1 Vector Algebra and Analysis
402(5)
13.1.1 Definition of Vectors
402(1)
13.1.2 Representation of Vectors
402(1)
13.1.3 Polar and Axial Vectors
403(1)
13.1.4 Addition and Subtraction of Vectors
403(1)
13.1.5 Multiplication of Vectors
404(1)
13.1.6 Differentiation of Vectors
405(2)
13.2 Coordinate Systems
407(3)
13.2.1 Cartesian Coordinates
408(1)
13.2.2 Cylindrical Coordinates
408(1)
13.2.3 Spherical Coordinates
409(1)
13.3 Complex Numbers
410(1)
13.3.1 Calculation rules of Complex Numbers
410(1)
13.3.2 Polar Representation
411(1)
13.4 Fourier-Analysis
411(2)
14 Solutions of the Problems
413(32)
14.1
Chapter 1
414(1)
14.2
Chapter 2
414(4)
14.3
Chapter 3
418(2)
14.4
Chapter 4
420(3)
14.5
Chapter 5
423(2)
14.6
Chapter 6
425(1)
14.7
Chapter 7
426(3)
14.8
Chapter 8
429(2)
14.9
Chapter 9
431(2)
14.10
Chapter 10
433(3)
14.11
Chapter 11
436(5)
14.12
Chapter 12
441(4)
Index 445
Wolfgang Demtröder, University Kaiserslautern