|
1 Introduction and Survey |
|
|
1 | (38) |
|
1.1 The Importance of Experiments |
|
|
2 | (1) |
|
1.2 The Concept of Models in Physics |
|
|
3 | (2) |
|
1.3 Short Historical Review |
|
|
5 | (6) |
|
1.3.1 The Natural Philosophy in Ancient Times |
|
|
5 | (2) |
|
1.3.2 The Development of Classical Physics |
|
|
7 | (3) |
|
|
10 | (1) |
|
1.4 The Present Conception of Our World |
|
|
11 | (3) |
|
1.5 Relations Between Physics and Other Sciences |
|
|
14 | (2) |
|
1.5.1 Biophysics and Medical Physics |
|
|
14 | (1) |
|
|
15 | (1) |
|
1.5.3 Geophysics and Meteorology |
|
|
15 | (1) |
|
1.5.4 Physics and Technology |
|
|
15 | (1) |
|
1.5.5 Physics and Philosophy |
|
|
16 | (1) |
|
1.6 The Basic Units in Physics, Their Standards and Measuring Techniques |
|
|
16 | (10) |
|
|
17 | (2) |
|
1.6.2 Measuring Techniques for Lengths |
|
|
19 | (1) |
|
|
20 | (3) |
|
1.6.4 How to measure Times |
|
|
23 | (1) |
|
1.6.5 Mass Units and Their Measurement |
|
|
23 | (1) |
|
1.6.6 Molar Quantity Unit |
|
|
24 | (1) |
|
|
24 | (1) |
|
1.6.8 Unit of the Electric Current |
|
|
25 | (1) |
|
1.6.9 Unit of Luminous Intensity |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
1.8 Accuracy and Precision; Measurement Uncertainties and Errors |
|
|
27 | (12) |
|
|
27 | (1) |
|
1.8.2 Statistical Errors, Distribution of Experimental Values, Mean Values |
|
|
27 | (2) |
|
1.8.3 Variance and its Measure |
|
|
29 | (1) |
|
1.8.4 Error Distribution Law |
|
|
29 | (2) |
|
|
31 | (1) |
|
1.8.6 Equalization Calculus |
|
|
32 | (2) |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (4) |
|
2 Mechanics of a Point Mass |
|
|
39 | (42) |
|
2.1 The Model of the Point Mass; Trajectories |
|
|
40 | (1) |
|
2.2 Velocity and Acceleration |
|
|
41 | (1) |
|
2.3 Uniformly Accelerated Motion |
|
|
42 | (2) |
|
|
43 | (1) |
|
|
43 | (1) |
|
2.4 Motions with Non-Constant Acceleration |
|
|
44 | (3) |
|
2.4.1 Uniform Circular Motion |
|
|
44 | (1) |
|
2.4.2 Motions on Trajectories with Arbitrary Curvature |
|
|
45 | (2) |
|
|
47 | (4) |
|
2.5.1 Forces as Vectors; Addition of Forces |
|
|
47 | (1) |
|
|
48 | (2) |
|
2.5.3 Measurements of Forces; Discussion of the Force Concept |
|
|
50 | (1) |
|
2.6 The Basic Equations of Mechanics |
|
|
51 | (5) |
|
2.6.1 The Newtonian Axioms |
|
|
51 | (1) |
|
2.6.2 Inertial and Gravitational Mass |
|
|
52 | (1) |
|
2.6.3 The Equation of Motion of a Particle in Arbitrary Force Fields |
|
|
53 | (3) |
|
2.7 Energy Conservation Law of Mechanics |
|
|
56 | (7) |
|
|
56 | (2) |
|
2.7.2 Path-Independent Work; Conservative Force-Fields |
|
|
58 | (1) |
|
|
59 | (2) |
|
2.7.4 Energy Conservation Law in Mechanics |
|
|
61 | (1) |
|
2.7.5 Relation Between Force Field and Potential |
|
|
62 | (1) |
|
2.8 Angular Momentum and Torque |
|
|
63 | (1) |
|
2.9 Gravitation and the Planetary Motions |
|
|
64 | (17) |
|
|
64 | (2) |
|
2.9.2 Newton's Law of Gravity |
|
|
66 | (1) |
|
|
66 | (2) |
|
2.9.4 The Effective Potential |
|
|
68 | (1) |
|
2.9.5 Gravitational Field of Extended Bodies |
|
|
69 | (2) |
|
2.9.6 Measurements of the Gravitational Constant G |
|
|
71 | (1) |
|
2.9.7 Testing Newton's Law of Gravity |
|
|
72 | (2) |
|
2.9.8 Experimental Determination of the Earth Acceleration g |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (2) |
|
3 Moving Coordinate Systems and Special Relativity |
|
|
81 | (22) |
|
|
82 | (1) |
|
3.2 Inertial Systems and Galilei-Transformations |
|
|
82 | (1) |
|
3.3 Accelerated Systems; Inertial Forces |
|
|
83 | (6) |
|
3.3.1 Rectilinear Accelerated Systems |
|
|
83 | (2) |
|
|
85 | (1) |
|
3.3.3 Centrifugal- and Coriolis-Forces |
|
|
86 | (3) |
|
|
89 | (1) |
|
3.4 The Constancy of the Velocity of Light |
|
|
89 | (1) |
|
3.5 Lorentz-Transformations |
|
|
90 | (2) |
|
3.6 Theory of Special Relativity |
|
|
92 | (11) |
|
3.6.1 The Problem of Simultaneity |
|
|
92 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
3.6.4 Lorentz-Contraction of Lengths |
|
|
94 | (2) |
|
|
96 | (1) |
|
|
97 | (2) |
|
3.6.7 Space-time Events and Causality |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
|
4 Systems of Point Masses; Collisions |
|
|
103 | (26) |
|
|
104 | (3) |
|
|
104 | (1) |
|
|
105 | (1) |
|
4.1.3 Angular Momentum of a System of Particles |
|
|
105 | (2) |
|
4.2 Collisions Between Two Particles |
|
|
107 | (8) |
|
|
108 | (1) |
|
4.2.2 Elastic Collisions in the Lab-System |
|
|
109 | (2) |
|
4.2.3 Elastic Collisions in the Centre-of Mass system |
|
|
111 | (2) |
|
4.2.4 Inelastic Collisions |
|
|
113 | (1) |
|
|
114 | (1) |
|
4.3 What Do We Learn from the Investigation of Collisions? |
|
|
115 | (4) |
|
4.3.1 Scattering in a Spherical Symmetric Potential |
|
|
115 | (3) |
|
4.3.2 Reactive Collisions |
|
|
118 | (1) |
|
4.4 Collisions at Relativistic Energies |
|
|
119 | (4) |
|
4.4.1 Relativistic Mass Increase |
|
|
119 | (1) |
|
4.4.2 Force and Relativistic Momentum |
|
|
120 | (1) |
|
4.4.3 The Relativistic Energy |
|
|
121 | (1) |
|
4.4.4 Inelastic Collisions at relativistic Energies |
|
|
122 | (1) |
|
4.4.5 Relativistic Formulation of Energy Conservation |
|
|
122 | (1) |
|
|
123 | (6) |
|
4.5.1 Conservation of Momentum |
|
|
123 | (1) |
|
4.5.2 Energy Conservation |
|
|
124 | (1) |
|
4.5.3 Conservation of Angular Momentum |
|
|
124 | (1) |
|
4.5.4 Conservation Laws and Symmetries |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
127 | (2) |
|
5 Dynamics of rigid Bodies |
|
|
129 | (24) |
|
5.1 The Model of a Rigid Body |
|
|
130 | (1) |
|
|
130 | (1) |
|
5.3 Motion of a Rigid Body |
|
|
131 | (1) |
|
5.4 Forces and Couple of Forces |
|
|
132 | (1) |
|
5.5 Rotational Inertia and Rotational Energy |
|
|
133 | (3) |
|
5.5.1 The Parallel Axis Theorem (Steiner's Theorem) |
|
|
134 | (2) |
|
5.6 Equation of Motion for the Rotation of a Rigid Body |
|
|
136 | (3) |
|
5.6.1 Rotation About an Axis for a Constant Torque |
|
|
137 | (2) |
|
5.6.2 Measurements of rotational inertia; Rotary Oscillations About a Fixed Axis |
|
|
139 | (1) |
|
5.6.3 Comparison Between Translation and Rotation |
|
|
139 | (1) |
|
5.7 Rotation About Free Axes; Spinning Top |
|
|
139 | (10) |
|
5.7.1 Inertial Tensor and Inertial Ellipsoid |
|
|
140 | (1) |
|
5.7.2 Principal Moments of Inertia |
|
|
141 | (2) |
|
5.7.3 Free Rotational axes |
|
|
143 | (1) |
|
|
144 | (1) |
|
5.7.5 The Torque-free Symmetric Top |
|
|
145 | (2) |
|
5.7.6 Precession of the Symmetric Top |
|
|
147 | (1) |
|
5.7.7 Superposition of Nutation and Precession |
|
|
148 | (1) |
|
5.8 The Earth as Symmetric Top |
|
|
149 | (4) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
6 Real Solid and Liquid Bodies |
|
|
153 | (30) |
|
6.1 Atomic Model of the Different Aggregate States |
|
|
154 | (1) |
|
6.2 Deformable Solid Bodies |
|
|
155 | (7) |
|
|
156 | (1) |
|
6.2.2 Transverse Contraction |
|
|
157 | (1) |
|
6.2.3 Shearing and Torsion Module |
|
|
158 | (1) |
|
|
159 | (2) |
|
6.2.5 Elastic Hysteresis; Energy of Deformation |
|
|
161 | (1) |
|
6.2.6 The Hardness of a Solid Body |
|
|
162 | (1) |
|
6.3 Static Liquids; Hydrostatics |
|
|
162 | (4) |
|
6.3.1 Free Displacement and Surfaces of Liquids |
|
|
162 | (1) |
|
6.3.2 Static Pressure in a Liquid |
|
|
163 | (2) |
|
6.3.3 Buoyancy and Floatage |
|
|
165 | (1) |
|
6.4 Phenomena at Liquid Surfaces |
|
|
166 | (5) |
|
|
166 | (2) |
|
6.4.2 Interfaces and Adhesion Tension |
|
|
168 | (2) |
|
|
170 | (1) |
|
6.4.4 Summary of Section 6.4 |
|
|
171 | (1) |
|
6.5 Friction Between Solid Bodies |
|
|
171 | (3) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (1) |
|
6.5.4 Significance of Friction for Technology |
|
|
174 | (1) |
|
6.6 The Earth as Deformable Body |
|
|
174 | (9) |
|
6.6.1 Ellipticity of the Rotating Earth |
|
|
175 | (1) |
|
|
175 | (3) |
|
6.6.3 Consequences of the Tides |
|
|
178 | (1) |
|
6.6.4 Measurements of the Earth Deformation |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (2) |
|
|
183 | (26) |
|
|
184 | (1) |
|
7.2 Atmospheric Pressure and Barometric Formula |
|
|
185 | (3) |
|
|
188 | (8) |
|
7.3.1 The Model of the Ideal Gas |
|
|
188 | (1) |
|
7.3.2 Basic Equations of the Kinetic Gas Theory |
|
|
189 | (1) |
|
7.3.3 Mean Kinetic Energy and Absolute Temperature |
|
|
190 | (1) |
|
7.3.4 Distribution Function |
|
|
190 | (1) |
|
7.3.5 Maxwell-Boltzmann Velocity Distribution |
|
|
191 | (4) |
|
7.3.6 Collision Cross Section and Mean Free Path Length |
|
|
195 | (1) |
|
7.4 Experimental Proof of the Kinetic Gas Theory |
|
|
196 | (2) |
|
|
196 | (2) |
|
7.5 Transport Phenomena in Gases |
|
|
198 | (6) |
|
|
198 | (2) |
|
|
200 | (1) |
|
7.5.3 Heat Conduction in Gases |
|
|
201 | (1) |
|
|
202 | (1) |
|
7.5.5 Summary of Transport Phenomena |
|
|
203 | (1) |
|
7.6 The Atmosphere of the Earth |
|
|
204 | (5) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
8 Liquids and Gases in Motion; Fluid Dynamics |
|
|
209 | (28) |
|
8.1 Basic Definitions and Types of Fluid Flow |
|
|
210 | (2) |
|
8.2 Euler Equation for Ideal Liquids |
|
|
212 | (1) |
|
|
212 | (1) |
|
|
213 | (3) |
|
|
216 | (4) |
|
|
216 | (2) |
|
8.5.2 Laminar Flow Between Two Parallel Walls |
|
|
218 | (1) |
|
8.5.3 Laminar Flows in Tubes |
|
|
219 | (1) |
|
8.5.4 Stokes Law, Falling Ball Viscometer |
|
|
220 | (1) |
|
8.6 Navier-Stokes Equation |
|
|
220 | (6) |
|
8.6.1 Vortices and Circulation |
|
|
221 | (1) |
|
8.6.2 Helmholtz Vorticity Theorems |
|
|
222 | (1) |
|
8.6.3 The Formation of Vortices |
|
|
223 | (1) |
|
8.6.4 Turbulent Flows; Flow Resistance |
|
|
224 | (2) |
|
|
226 | (2) |
|
8.7.1 The Aerodynamical Buoyancy |
|
|
226 | (1) |
|
8.7.2 Relation between Dynamical and Flow Resistance |
|
|
227 | (1) |
|
8.7.3 Forces on a flying Plane |
|
|
228 | (1) |
|
8.8 Similarity Laws; Reynolds' Number |
|
|
228 | (1) |
|
|
229 | (8) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (2) |
|
|
237 | (16) |
|
9.1 Fundamentals and Basic Concepts |
|
|
238 | (3) |
|
9.1.1 The Different Vacuum Ranges |
|
|
238 | (1) |
|
9.1.2 Influence of the Molecules at the Walls |
|
|
239 | (1) |
|
9.1.3 Pumping Speed and Suction Capacity of Vacuum Pumps |
|
|
239 | (1) |
|
9.1.4 Flow Conductance of Vacuum Pipes |
|
|
240 | (1) |
|
9.1.5 Accessible Final Pressure |
|
|
241 | (1) |
|
|
241 | (6) |
|
|
242 | (2) |
|
|
244 | (2) |
|
9.2.3 Cryo- and Sorption-Pumps; Ion-Getter Pumps |
|
|
246 | (1) |
|
9.3 Measurement of Low Pressures |
|
|
247 | (6) |
|
|
248 | (1) |
|
|
248 | (1) |
|
9.3.3 Heat Conduction Manometers |
|
|
249 | (1) |
|
9.3.4 Ionization Gauge and Penning Vacuum Meter |
|
|
249 | (1) |
|
9.3.5 Rotating Ball Vacuum Gauge |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
253 | (68) |
|
10.1 Temperature and Amount of Heat |
|
|
254 | (12) |
|
10.1.1 Temperature Measurements, Thermometer, and Temperature Scales |
|
|
254 | (2) |
|
10.1.2 Thermal Expansion of Liquids and Solids |
|
|
256 | (2) |
|
10.1.3 Thermal Expansion of Gases; Gas Thermometer |
|
|
258 | (1) |
|
10.1.4 Absolute Temperature Scale |
|
|
259 | (1) |
|
10.1.5 Amount of Heat and Specific Heat Capacity |
|
|
260 | (1) |
|
10.1.6 Molar Volume and Avogadro Constant |
|
|
261 | (1) |
|
10.1.7 Internal Energy and Molar Heat Capacity of Ideal Gases |
|
|
261 | (1) |
|
10.1.8 Specific Heat of a Gas at Constant Pressure |
|
|
262 | (1) |
|
10.1.9 Molecular Explanation of the Specific Heat |
|
|
263 | (1) |
|
10.1.10 Specific Heat Capacity of Solids |
|
|
264 | (1) |
|
10.1.11 Fusion Heat and Heat of Evaporation |
|
|
265 | (1) |
|
|
266 | (13) |
|
|
266 | (1) |
|
|
267 | (4) |
|
|
271 | (1) |
|
10.2.4 Methods of Thermal Insulation |
|
|
271 | (2) |
|
|
273 | (6) |
|
10.3 The Three Laws of Thermodynamics |
|
|
279 | (20) |
|
10.3.1 Thermodynamic Variables |
|
|
279 | (1) |
|
10.3.2 The First Law of Thermodynamics |
|
|
280 | (1) |
|
10.3.3 Special Processes as Examples of the First Law of Thermodynamics |
|
|
281 | (1) |
|
10.3.4 The Second Law of Thermodynamics |
|
|
282 | (1) |
|
|
283 | (3) |
|
10.3.6 Equivalent Formulations of the Second Law |
|
|
286 | (1) |
|
|
286 | (4) |
|
10.3.8 Reversible and Irreversible Processes |
|
|
290 | (1) |
|
10.3.9 Free Energy and Enthalpy |
|
|
291 | (1) |
|
10.3.10 Chemical Reactions |
|
|
292 | (1) |
|
10.3.11 Thermodynamic Potentials; Relations Between Thermodynamic Variables |
|
|
292 | (1) |
|
10.3.12 Equilibrium States |
|
|
293 | (1) |
|
10.3.13 The Third Law of Thermodynamics |
|
|
294 | (1) |
|
10.3.14 Thermodynamic Engines |
|
|
295 | (4) |
|
10.4 Thermodynamics of Real Gases and Liquids |
|
|
299 | (10) |
|
10.4.1 Van der Waals Equation of State |
|
|
299 | (2) |
|
10.4.2 Matter in Different Aggregation States |
|
|
301 | (6) |
|
10.4.3 Solutions and Mixed States |
|
|
307 | (2) |
|
10.5 Comparison of the Different Changes of State |
|
|
309 | (1) |
|
10.6 Energy Sources and Energy Conversion |
|
|
309 | (12) |
|
10.6.1 Hydro-Electric Power Plants |
|
|
312 | (1) |
|
10.6.2 Tidal Power Stations |
|
|
312 | (1) |
|
10.6.3 Wave Power Stations |
|
|
313 | (1) |
|
10.6.4 Geothermal Power Plants |
|
|
313 | (1) |
|
10.6.5 Solar-Thermal Power Stations |
|
|
314 | (1) |
|
10.6.6 Photovoltaic Power Stations |
|
|
315 | (1) |
|
|
316 | (1) |
|
|
316 | (1) |
|
|
317 | (1) |
|
|
318 | (1) |
|
|
319 | (2) |
|
11 Mechanical Oscillations and Waves |
|
|
321 | (60) |
|
11.1 The Free Undamped Oscillator |
|
|
322 | (1) |
|
11.2 Mathematical Notations of Oscillations |
|
|
323 | (1) |
|
11.3 Superposition of Oscillations |
|
|
324 | (4) |
|
11.3.1 One-Dimensional Superposition |
|
|
324 | (3) |
|
11.3.2 Two-dimensional Superposition; Lissajous-Figures |
|
|
327 | (1) |
|
11.4 The Free Damped Oscillator |
|
|
328 | (2) |
|
11.4.1 y < ω0, i. e. weak damping |
|
|
329 | (1) |
|
11.4.2 y > ωa0, i- e. strong Damping |
|
|
329 | (1) |
|
11.4.3 y = ω0 (aperiodic limiting case) |
|
|
330 | (1) |
|
|
330 | (3) |
|
|
331 | (2) |
|
|
333 | (1) |
|
11.6 Energy Balance for the Oscillation of a Point Mass |
|
|
333 | (1) |
|
11.7 Parametric Oscillator |
|
|
334 | (1) |
|
|
335 | (4) |
|
11.8.1 Coupled Spring Pendulums |
|
|
335 | (3) |
|
11.8.2 Forced Oscillations of Two Coupled Oscillators |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (13) |
|
11.9.1 Different Representations of Harmonic Plane Waves |
|
|
340 | (1) |
|
|
341 | (1) |
|
11.9.3 General Description of Arbitrary Waves; Wave-Equation |
|
|
341 | (1) |
|
11.9.4 Different Types of Waves |
|
|
342 | (2) |
|
11.9.5 Propagation of Waves in Different Media |
|
|
344 | (6) |
|
11.9.6 Energy Density and Energy Transport in a Wave |
|
|
350 | (1) |
|
11.9.7 Dispersion; Phase- and Group-Velocity |
|
|
350 | (2) |
|
11.10 Superposition of Waves; Interference |
|
|
352 | (2) |
|
11.10.1 Coherence and Interference |
|
|
352 | (1) |
|
11.10.2 Superposition of Two Harmonic Waves |
|
|
353 | (1) |
|
11.11 Diffraction, Reflection and Refraction of Waves |
|
|
354 | (5) |
|
11.11.1 Huygens's Principle |
|
|
355 | (1) |
|
11.11.2 Diffraction at Apertures |
|
|
356 | (2) |
|
|
358 | (1) |
|
11.11.4 Reflection and Refraction of Waves |
|
|
358 | (1) |
|
|
359 | (4) |
|
11.12.1 One-Dimensional Standing Waves |
|
|
359 | (1) |
|
11.12.2 Experimental Demonstrations of Standing Waves |
|
|
360 | (1) |
|
11.12.3 Two-dimensional Resonances of Vibrating Membranes |
|
|
361 | (2) |
|
11.13 Waves Generated by Moving Sources |
|
|
363 | (3) |
|
|
363 | (1) |
|
11.13.2 Wave Fronts for Moving Sources |
|
|
364 | (1) |
|
|
365 | (1) |
|
|
366 | (6) |
|
|
366 | (1) |
|
11.14.2 Pressure Amplitude and Energy Density of Acoustic Waves |
|
|
367 | (1) |
|
|
368 | (1) |
|
|
368 | (1) |
|
|
369 | (1) |
|
11.14.6 Applications of Ultrasound |
|
|
370 | (1) |
|
11.14.7 Techniques of Ultrasonic Diagnosis |
|
|
371 | (1) |
|
11.15 Physics of Musical Instruments |
|
|
372 | (9) |
|
11.15.1 Classification of Musical Instruments |
|
|
372 | (1) |
|
11.15.2 Chords, Musical Scale and Tuning |
|
|
372 | (2) |
|
11.15.3 Physics of the Violin |
|
|
374 | (1) |
|
11.15.4 Physics of the Piano |
|
|
375 | (1) |
|
|
376 | (2) |
|
|
378 | (1) |
|
|
379 | (2) |
|
12 Nonlinear Dynamics and Chaos |
|
|
381 | (20) |
|
12.1 Stability of Dynamical Systems |
|
|
383 | (3) |
|
12.2 Logistic Growth Law; Feigenbaum-Diagram |
|
|
386 | (2) |
|
12.3 Parametric Oscillator |
|
|
388 | (1) |
|
12.4 Population Explosion |
|
|
389 | (1) |
|
12.5 Systems with Delayed Feedback |
|
|
390 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
393 | (4) |
|
12.9 Consequences for Our Comprehension of the Real World |
|
|
397 | (4) |
|
|
397 | (1) |
|
|
398 | (1) |
|
|
399 | (2) |
|
|
401 | (12) |
|
13.1 Vector Algebra and Analysis |
|
|
402 | (5) |
|
13.1.1 Definition of Vectors |
|
|
402 | (1) |
|
13.1.2 Representation of Vectors |
|
|
402 | (1) |
|
13.1.3 Polar and Axial Vectors |
|
|
403 | (1) |
|
13.1.4 Addition and Subtraction of Vectors |
|
|
403 | (1) |
|
13.1.5 Multiplication of Vectors |
|
|
404 | (1) |
|
13.1.6 Differentiation of Vectors |
|
|
405 | (2) |
|
|
407 | (3) |
|
13.2.1 Cartesian Coordinates |
|
|
408 | (1) |
|
13.2.2 Cylindrical Coordinates |
|
|
408 | (1) |
|
13.2.3 Spherical Coordinates |
|
|
409 | (1) |
|
|
410 | (1) |
|
13.3.1 Calculation rules of Complex Numbers |
|
|
410 | (1) |
|
13.3.2 Polar Representation |
|
|
411 | (1) |
|
|
411 | (2) |
|
14 Solutions of the Problems |
|
|
413 | (32) |
|
|
414 | (1) |
|
|
414 | (4) |
|
|
418 | (2) |
|
|
420 | (3) |
|
|
423 | (2) |
|
|
425 | (1) |
|
|
426 | (3) |
|
|
429 | (2) |
|
|
431 | (2) |
|
|
433 | (3) |
|
|
436 | (5) |
|
|
441 | (4) |
Index |
|
445 | |