Preface |
|
v | |
Photos of Yi-Shi Duan |
|
vii | |
|
1 SU(2) Gauge Theory and Electrodynamics with N Magnetic Monopoles |
|
|
1 | (16) |
|
|
|
|
1 | (1) |
|
1.2 Decomposition of gauge potential and its inner structure |
|
|
2 | (2) |
|
1.3 Electrodynamics of magnetic monopoles and electrical particles system in the SU(2) gauge theory |
|
|
4 | (4) |
|
1.4 Features of the solution of monopoles' electrodynamical system and topological conservative current |
|
|
8 | (3) |
|
1.5 Sourceless solution of SU(2) gauge field and magnetic monopole |
|
|
11 | (1) |
|
1.6 U(1) gauge potential of electromagnetic tensor Kμv |
|
|
12 | (5) |
|
|
15 | (2) |
|
2 Abelian Decomposition of QCD |
|
|
17 | (42) |
|
|
|
18 | (2) |
|
2.2 Abelian decomposition: a review |
|
|
20 | (2) |
|
2.3 Abelian decomposition of SU(3) QCD |
|
|
22 | (3) |
|
2.4 Abelian dominance and monopole condensation in QCD |
|
|
25 | (6) |
|
2.5 Quark and chromon model and quarkonium-glueball mixing |
|
|
31 | (3) |
|
2.6 Monoball: vacuum fluctuation of monopole condensation |
|
|
34 | (2) |
|
|
36 | (4) |
|
2.8 Einstein's theory: gauge theory of Lorentz group |
|
|
40 | (2) |
|
2.9 Abelian decomposition of Einstein's theory: restricted gravity |
|
|
42 | (2) |
|
2.10 Canonical momentum versus kinematic momentum |
|
|
44 | (2) |
|
2.11 Proton spin crisis problem: present status and a new resolution |
|
|
46 | (6) |
|
|
52 | (7) |
|
|
55 | (4) |
|
3 How Can We Understand Quark Confinement in Quantum Yang-Mills Theory? |
|
|
59 | (18) |
|
|
|
59 | (2) |
|
3.2 Decomposition of the Yang-Mills field and extension to SU(N) gauge group |
|
|
61 | (2) |
|
3.3 Non-Abelian Stokes theorem for the Wilson loop operator and gauge-invariant magnetic monopole |
|
|
63 | (1) |
|
3.4 Lattice formulations and numerical simulations |
|
|
63 | (8) |
|
|
71 | (6) |
|
|
73 | (4) |
|
4 Asymmetrical Input-output Control in Cavity Quantum Electrodynamics |
|
|
77 | (12) |
|
|
|
77 | (1) |
|
4.2 Theoretical model and analysis |
|
|
78 | (4) |
|
|
82 | (3) |
|
|
85 | (4) |
|
|
87 | (2) |
|
5 Energy and Angular Momentum in Gravity Theories |
|
|
89 | (80) |
|
|
|
|
90 | (3) |
|
5.2 Noether currents and conserved quantities |
|
|
93 | (22) |
|
|
94 | (2) |
|
5.2.2 Theories without background fields |
|
|
96 | (3) |
|
5.2.3 Energy-momentum tensor of matter fields |
|
|
99 | (1) |
|
5.2.4 Noether currents and energy of matter fields |
|
|
100 | (2) |
|
5.2.5 Canonical energy-momentum tensors of matter fields |
|
|
102 | (4) |
|
5.2.6 Pseudo tensor and energy-momentum tensor for gravitational field |
|
|
106 | (3) |
|
5.2.7 Vielbein, semimetric, four-legs, and tetrad |
|
|
109 | (2) |
|
5.2.8 Gravitational energy-momentum can not be locally defined |
|
|
111 | (1) |
|
5.2.9 Komar mass and angular momentum |
|
|
112 | (3) |
|
|
115 | (16) |
|
5.3.1 General definition on conserved quantities |
|
|
115 | (2) |
|
5.3.2 Global quantities at spacelike infinity |
|
|
117 | (9) |
|
5.3.3 Global quantities at null infinity |
|
|
126 | (5) |
|
5.4 Quasi-local definitions |
|
|
131 | (20) |
|
5.4.1 Geometry of codimension-2 surface |
|
|
132 | (7) |
|
5.4.2 Misner-Sharp energy |
|
|
139 | (2) |
|
|
141 | (4) |
|
5.4.4 Brown-York quasi-local energy-momentum tensor |
|
|
145 | (6) |
|
5.4.5 Other quasi-local definitions |
|
|
151 | (1) |
|
5.5 Conclusion and discussion |
|
|
151 | (2) |
|
5.6 Asymptotically AdS spacetimes |
|
|
153 | (6) |
|
5.7 An example: Kerr--AdS spacetime |
|
|
159 | (1) |
|
5.8 Asymptotically dS spacetimes |
|
|
160 | (9) |
|
|
165 | (4) |
|
6 Gravitational Energy and the Gauge Theory Perspective |
|
|
169 | (20) |
|
|
|
|
170 | (1) |
|
6.2 Some historical background |
|
|
170 | (1) |
|
6.2.1 Automatic conservation of the source and gauge fields |
|
|
170 | (1) |
|
6.3 Noether's 1918 contribution |
|
|
171 | (1) |
|
6.4 Energy-momentum pseudotensors and the Hamiltonian |
|
|
171 | (1) |
|
6.5 The Hamiltonian approach |
|
|
172 | (1) |
|
|
172 | (1) |
|
6.7 Geometry: kinematics and dynamics |
|
|
173 | (2) |
|
6.8 The Poincare gauge theory of gravity |
|
|
175 | (1) |
|
|
176 | (1) |
|
6.9 The covariant Hamiltonian formulation |
|
|
176 | (3) |
|
6.10 Application to the PG and GR |
|
|
179 | (1) |
|
6.10.1 Preferred Hamiltonian boundary terms |
|
|
180 | (1) |
|
6.11 The reference choice |
|
|
180 | (3) |
|
6.11.1 4D isometric matching |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (6) |
|
|
185 | (4) |
|
7 Energy-Momentum in General Relativity |
|
|
189 | (22) |
|
|
|
7.1 Energy-momentum of gravitational systems |
|
|
189 | (8) |
|
7.1.1 The total conserved quantities for matter fields |
|
|
189 | (3) |
|
7.1.2 The total conserved quantities for gravity |
|
|
192 | (2) |
|
7.1.3 Duan's energy-momentum |
|
|
194 | (1) |
|
7.1.4 ADM total energy and linear momentum |
|
|
195 | (1) |
|
7.1.5 Bondi's energy-momentum... |
|
|
196 | (1) |
|
|
197 | (3) |
|
7.3 Positivity of the total energy |
|
|
200 | (2) |
|
7.4 Positive cosmological constant |
|
|
202 | (4) |
|
|
206 | (5) |
|
|
207 | (4) |
|
8 Introduction to Extra Dimensions and Thick Braneworlds |
|
|
211 | (50) |
|
|
|
211 | (2) |
|
8.2 Some extra dimension theories |
|
|
213 | (11) |
|
|
213 | (3) |
|
8.2.2 Non-compact extra dimension: domain wall model |
|
|
216 | (3) |
|
8.2.3 Large extra dimensions: ADD braneworld model |
|
|
219 | (2) |
|
8.2.4 Warped extra dimension: RS braneworld models |
|
|
221 | (3) |
|
8.3 Solutions of thick brane models in extended theories of gravity |
|
|
224 | (18) |
|
|
228 | (4) |
|
8.3.2 Palatini f(R) theory |
|
|
232 | (3) |
|
8.3.3 Eddington inspired Born--Infeld theory |
|
|
235 | (1) |
|
8.3.4 Scalar-tensor theory |
|
|
236 | (4) |
|
|
240 | (2) |
|
8.4 Localization of bulk matter fields |
|
|
242 | (15) |
|
|
243 | (2) |
|
|
245 | (5) |
|
8.4.3 Kalb--Ramond fields |
|
|
250 | (2) |
|
|
252 | (5) |
|
|
257 | (4) |
Bibliography |
|
261 | (16) |
Appendix A Chronicle of Prof. Yi-Shi Duan's life |
|
277 | (38) |
Appendix B Chronicle of Prof. Yi-Shi Duan's life |
|
315 | (26) |
Appendix C List of Prof. Yi-Shi Duan's Publications |
|
341 | |